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ABSTRACT

A class C of pointed spaces is called a cellular class if it is closed under
weak equivalences, arbitrary wedges and pointed homotopy pushouts.
The smallest cellular class containing X is denoted by C'(X), and a par-
tial order relation « is defined by: X € Y if Y € C(X). In this text
we investigate the sub partial order sets generated respectively by sim-
ply connected finite CW-complexes and by rational spaces. For rational
spaces we prove a unique decomposition theorem, a density theorem and
the existence of infinitely many non-comparable elements. We then prove
the density theorem for a generic class of finite CW-complexes.

1. Introduction

Cellular classes were introduced by E. Dror Farjoun [8] in the context of Bousfield
localization and colocalization theories [2]. The aim of this paper is the study of
the properties of the lattice formed by cellular classes.

For the sake of simplicity we restrict ourselves to the family of strictly simply-
connected CW-complexes, i.e., simply-connected CW-complexes with nontrivial
7. Similar results can easily be obtained for the category of (2n — 1)-connected
finite CW-complexes. A class C of pointed spaces is called a cellular class if it
satisfies the following three closure properties:

o (closure under weak equivalences) if A € C and B ~ A, then B € (;
o (closure under arbitrary wedges) if {A;} € C, then \/, A} € C; and

Received November 22, 2001 and in revised form May 23, 2002

317



318 Y. FELIX AND P.-E. PARENT Isr. J. Math.

¢ (closure under pointed homotopy pushouts) if A, B, C € C, then any pointed
homotopy pushout hocolim,(B ¢« A — C) belongs to C.

The smallest cellular class containing a space X is denoted by C(X), e.g.,
C(S8?%) consists of the simply-connected CW-complexes. A space X is said to
build a space Y, if ¥ belongs to C(X). In this case we write X « Y. f X « Y
and Y <« X, then the two spaces are said to be cellularly equivalent, a relation
that we denote by X ~ Y. A strict inequality X <« Y is denoted by X LY.
The rational cellular class of X is the cellular class C'(X;,) generated by the
rationalization Xy of X.

In {5], W. Chacholski, P. E. Parent and D. Stanley show that the partially
ordered set (poset) (Spaces, <) is a complete lattice. The meet of two spaces is
the wedge of the spaces. The join of two simply-connected finite CW-complexes
X and Y is the wedge of all simply-connected countable CW-complexes that are
built by X and Y.

We denote by B the family of cellular classes of strictly simply-connected finite
CW-complexes, and by By the corresponding family for strictly simply-connected
c-finite rational spaces. Here a rational space is called c-finite (cohomologically
finite) if } 5, dim H*(X;Q) < co. In [6], Chachdlski, Parent and Stanley prove
the following_ Theorem that will be absolutely crucial throughout the paper.

THEOREM ([6]): Let X andY be strictly simply-connected rational spaces. Then
X <Y if and only if there is a continuous map f: \;c; X — Y such that Ha(f)
is surjective.

The posets B and By contain infinitely many elements. For instance,

S & P2(C) € P*(C) & -+ < P®(C); and
52 & - < PHQ#PY(C)#P%(C) < PX(C)#P%(C) < P*(C).

Clearly, the structure of these posets is highly nontrivial as shown by the
following results.

In [14] K. Hess has shown that the poset By contains non-comparable elements
that have the same rational cohomology algebra and the same rational homotopy
Lie algebra.

More recently an injection of the usual ordered set (R, <) into the poset of (non-
necessarily finite dimensional) rational spaces has been obtained by Chachdlski,
Parent and Stanley ([7]).

In this paper we consider the following important problem, namely,
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Density problem: Let X and Y be simply-connected finite CW-complexes such
that

S« X <Y < K(Q,2).

Does there exist a simply-connected finite CW-complex Z not equivalent to X
and Y such that X « Z < Y7

Our first theorem gives an affirmative answer to the density problem for the
poset By. We also show that there are infinitely many non-comparable elements
in this poset.

THEOREM 1 (Rational density): Suppose that X L Y is a strict inequality in

By. Then there are infinitely many non-comparable strictly simply-connected
S

c-finite rational spaces Z,, n > 1, such that X <s< Zn LY.

Finally, we construct injections of the usual poset (Q N[0, 1], <) into B.

THEOREM 2: There is a family of simply connected finite CW-complexes F that
satisfies the following property. If X € F, and if w is an element in my,(2X)
with 2q¢+1 > dim X, which is not in the radical R(X) of X, and such that w©1
is nontrivial in my,{Q2X) @ Q, then there exists a poset injection

fxw: (QN[0,1], <) = (B, <),

with fx,(0) = X and fx (1) = (X Uz €*%2). Here @ denotes the element of
Taq+1{X) corresponding to w by the natural adjunction.

Since (@, <) injects into (QN]0,1[, <), Theorem 2 gives different injections of
(@, <) into the poset (B,<). In order to describe the family F, we need to
introduce some definitions.

Definition 1: A space X is called (rationally) irreducible if its rationalization

X satisfies the following properties.

(I1) Xo is not equivalent to a wedge of rational spaces \/;c; X; with dim Hy(X;)
< dim Ho(X,) for i € I; and

(I3) a self-map f of X that induces an isomorphism on Hy(Xp) is a homotopy
self-equivalence.

For example, a space whose rational cohomology algebra is generated by ele-
ments of degree 2 satisfies I5. More generally, spaces X for which the rational
Hurewicz map hq: m4(X) © Q — Hy(X;Q) is zero for ¢ > 2 also satisfy I (cf.
Proposition 3, below). When n is even, a connected sum of r copies of P"*(C),
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X = #"P™(C), is irreducible. Suppose in fact that X is cellularly equivalent to
a wedge ¥ = Vie ; X;. This implies the existence of maps g and h

\/XO 5 VjY h:—l/i)hj Xo

k
such that H%(h) and H?(g) are injective. Suppose dim Hs(X;) < dim Hy(Xo);
then for i € I and j € J there is some «;; € H?(X,) such that H?(h;|x, )(a;) =
0. Since n is even, H?®(X,) is generated by aj;. This implies that H n(h) = 0.
Take 3 € H%(Xo). We have H?"(h)(") = 0. But this is impossible because,
from the injectivity of H2(ho g), we have H?"(ho g)(8") = (H%(ho g)(B))" # 0.

Similar arguments show that P3(C)#(S® x S®) is another example of an

irreducible space.

Definition 2 ([10]): A simply-connected finite CW-complex X is called (ratio-
nally) hyperbolic (respectively elliptic) if the graded vector space 7,.(X) ®Q
is infinite dimensional (resp. finite dimensional).

The dichotomy between elliptic and hyperbolic spaces is very important in
rational homotopy theory. If X is elliptic, then its rational cohomology alge-
bra H*(X; Q) satisfies Poincar duality, the Euler-Poincaré characteristic is non-
negative, and m(X) @ Q = 0 for ¢ > 2-dimX. On the other hand, when
X is hyperbolic, the graded Lie algebra m,(Q2X) @ Q is not nilpotent, and the
union R(X) of all solvable ideals in 7,(2X) ® Q, called the radical of X, is
a finite dimensional nilpotent Lie algebra ([9], ([10], Theorem 36.5)). More-
over, dim Reyen(X) < cat (X) ([10], Theorem 36.5), where cat (X) denotes the
Lusternik—Schnirelmann category of the space X ([18]), where by convention the
category of a contractible space is zero. In particular, if w ¢ R(X), then the ideal
generated by w is infinite dimensional.

Definition 3: A Bousfield class C is a cellular class together with the require-
ment that whenever F — E — B is a fibration sequence in which F, B € C,
then £ € C. In [5], the authors show that any Bousfield class generated by a
space has a cellular generator. When two spaces generate the same Bousfield
class, they are called Bousfield equivalent. For instance, a deep result of Hopkins
and Smith ([16]) shows that if X is a simply-connected finite CW-complex, and
72(X) = Z ® G, then X is Bousfield equivalent to S2.

We can now make Theorem 2 more precise. The family F is the family of ir-
reducible, hyperbolic, finite, simply-connected CW-complexes that are Bousfield
equivalent to the sphere S2.
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Let us come back to the rational poset. In order to prove the rational density
we first prove a unique decomposition theorem.

Definition 4: A decomposition X ~ (V,c; X;) VY is called an irreducible
decomposition relative to Y if the following properties are satisfied:
(Py) each X; is an irreducible space; and

(P2) if for some ig € I we have a continuous map

f:\ka; Y((\/Xz)vY) — Xi,

i€l

such that Hy(f;Q) is surjective, then for some Fk, the restriction
iy X Xi, — X, is a rational homotopy equivalence.
When Y is contractible, the irreducible decomposition relative to Y is called an
irreducible decomposition of X. An irreducible space X is an irreducible
decomposition of X (cf. Proposition 1 below).

THEOREM 3: Let X and Y be strictly simply-connected c-finite rational spaces;
then X VY admits an irreducible decomposition relative to Y.

THEOREM 4 (Unique decomposition theorem): A strictly simply-connected c-
finite rational space admits a unique (up to permutation of the factors) irreducible
decomposition.

In other words, if Vie ;X; and jes Y; are irreducible decompositions, then
there is a bijection f: I — J such that X ~ Y} ,.

On one hand, the poset By is rather simple (unique decomposition theorem),
on the other, it seems very complicated. In particular, we construct (Theorem 5)
an injection 8 of the poset of finitely generated ideals in a free graded Lie algebra
on two generators into By satisfying (1) <« 6(J) if and only if I C J.

The paper is organized as follows. In section 3 we develop properties of irre-
ducible spaces and irreducible decompositions. Section 4 contains tools for the
construction of strict inequalities. Sections 5 and 6 are devoted to the proof of
Theorem 1, and Section 7 to the proof of Theorem 2.

The proof of Theorem 1 is based on the following argument. Suppose X & Y
then X ~ X VY <S< Y. We then take an irreducible decomposition of X VY
relative to Y. This gives

T n
XN\/XiVY<< \/XiVY<<-~-<<Xn\/Y<<Y.

i=1 =2
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By assumption, one inequality has to be strict, thus there is a sequence
X< ZVT KT Y,

with Z V T irreducible relative to T.

Now the proof splits into two cases depending on whether Z is hyperbolic or
elliptic. In the elliptic case, let n be the least integer m such that 752, (Z) ©Q =
0. We choose an element a € m,~1(Z) such that a ©1 # 0 in 72,-1(2) © Q.
Let NV be an integer greater than the cohomological dimension of Z v T, and let
M be an integer greater than 2 - dim H,(Z V T;Q). Depending on the value of
n, we consider the following space Ryz:

2M M
when n =2, Rz = <<\/PZ-N(C)VZ> Uatw € ) 2521 1> 2]
i=1 i=1

and

2M M
when n > 2, Rz = << \/ StV Z) Ut e%) , w= Z[sgi_l,sgi],
Y i=1

i=1

where the PN (C) are copies of the complex projective space PV (C), and j; is a
generator of m3( PN (C)).

We show that Rz V T is irreducible relative to T, that Rz is hyperbolic, and
that

ZVT & RzVT <T.

Finally, we prove that if $ Vv T is irreducible relative to T and S is hyperbolic,
then there is a sequence of non-comparable spaces Z,, such that

SVT & Z,, < T.

Throughout this paper, if o is an element of 74(2X), then & denotes the
corresponding element in 7g41(X) through the natural isomorphism 7, (2.X) =

Tas1(X).

ACKNOWLEDGEMENT: The authors would like to thank Barry Jessup and the
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2. Backgrounds

2.1. OVERVIEW OF RATIONAL HOMOTOPY THEORY. In this text we mainly
use tools from rational homotopy theory, and refer the reader to [21], [10] and
[22] for the necessary background. Each simply-connected space with finite Betti
numbers admits a Sullivan minimal model Mx = (AV,d) and a Quillen minimal
model Ly = (L(W),d) that have the following properties:

Homg(V", Q) = 1,(X) © Q= H,_(L(W),d), and
HY(AV d) = H*(X;Q) = Homg(W,_-1,Q).

Each continuous map f: X' — Y admits a Sullivan minimal model M;: My —
M and a Quillen minimal model £;: Lx — Ly. Moreover, each morphism of
differential graded algebras ¢: My — My or differential graded Lie algebras
Y: Lx — Ly can be realized by a continuous map f: Xg — Y;. Denote by [—, —]
the set of homotopy classes. There are hijections

[‘YO, )b] = [M}', Mx] = [ﬁx, C}'].

The dichotomy between elliptic and hyperbolic spaces, as noted in the intro-
duction, is very useful. For instance, in the elliptic case, the greatest integer m
such that 7,,,(X) # 0 is always odd ([11]); and the rational homotopy Lie algebra
of an hyperbolic space has exponential growth.

A simply-connected c-finite rational space Y is always the rationalization of a
simply-connected finite CW-complex X, (Y = Xy). From the cell decomposition
of X we deduce a rational cell decomposition of Xg. In fact, if X = ZU, €” then
Xo is the homotopy cofiber of the map «p: ,sg—l — Zy. and we say that Y is
obtained from Z; by adjunction of a rational cell of dimension n. The (rational)
skeleton of dimension p of Y, denoted Y, is the subspace of ¥ formed by the
rational cells of dimension < p. This procedure shows how to construct, in a very
simple way, the rationalization of a space X from a cellular decomposition of X.
By a result of Baues ([1]), we can always choose a cell decomposition in which
the suspensions of the attaching maps of the cells are trivial.

2.2. POSETS AND LATTICES. A lattice {L.V,N) is a nonempty set closed
under two binary operations V (join) and N (meet) such that the following laws
are satisfied for all @, b,e € L:

o associative laws: aV (bve) = (aVb)Ve,an(bne) = (enbd)Nc;

e commutative laws: a Vb=bVa,aNb=>bNa; and

e absorption laws: a Vv (aNd) =a,an(aVvbd) =a.
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An order relation < can be defined on a lattice such that ¢ < b means that
aVvVb=hb.

A lattice can be seen as a poset (E, <) such that any set of two elements
possesses both a least upper bound and a greatest lower bound.

3. Irreducible spaces

3.1. IRREDUCIBILITY PROPERTIES AND CRITERIA. We callamap f: X - Y
H, -surjective or injective if the map H,,(f) is respectively surjective or injective.

LEMMA 1: Let f =V fi: Viel X; =Y be an Hy-surjective map between simply-
connected c-finite rational spaces. Then each f; factors as X; ki Y; B Y such
that the h; are Hy-surjective, the g; are Ho-injective, themap \/; gi: V;c; Vi = Y
is Ho-surjective and the spaces Y; are simply-connected c-finite rational spaces.

Proof: Denote by ¢;: (AZ,d) — (AV;,d) a Sullivan minimal model of f;, and
denote by (I;,d) its image. Clearly (I;,d) is a commutative differential graded
algebra, and ; factors through it, i.e.,

0i = 0; 09 (NZ,d) B (I;,d) B (AV;,d).

We denote by Y; the (Sullivan) geometric realization of the algebra (I;.d)
([10], [21]). The algebra maps ¢; and 6; can be realized by maps g;: ¥; — Y and
hi: X; = Y;. Denote by n; the cohomological dimension of X;. Since H*(I;,d)
can be infinite dimensional, in order to satisfy all the requirements of the lemma,
we replace Y; by its rational skeleton of dimension n;. [ |

PROPOSITION 1.: An irreducible space X is an irreducible decomposition of X.

Proof: Suppose f =\, ¢; fit V;c; X = X is an Ha-surjective map. By Lemma
1, each f; factorizes as X LN Y; £5 X such that the h; are Hs-surjective, the
g; are Ho-injective, the map V/, g;: Vz‘e 1 Yi = X is Hy-surjective and the spaces
Y; are simply-connected c-finite rational spaces. Then X is cellularly equivalent
to V, Y;. By irreducibility property I, for some i, Hy(h;) is an isomorphism and
therefore Ha(f;) is also an isomorphism. By irreducibility condition I, f; is an
homotopy self-equivalence. This completes the proof of Proposition 1. |

The irreducibility condition simplifies the verification of cellular equivalences
as shown by the following proposition.
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PROPOSITION 2: Let X, Y and T be strictly simply-connected c-finite rational
spaces. If X VT is an irreducible decomposition relative toT, and XVT ~ Y VT,
then there is an Hq-surjective map k:' Y — X.

Proof: Since X VT and Y vV T are cellularly equivalent, there are Hs-surjective
maps

9=Vgi: VO VT) X and f=\/fii \/(XVT)>Y

jed el

This gives an Hy-surjective map

[\/\/(gji,,om] v [\/g,.lT]: (\/ (\/XvT)>v<\/T> X

jeJiel jedJ Jj€J Niel j€J

By Lemma 1, each map ijy © fi factors as
hi g id oy
XVvT ™y, % x,

such that each h;; is H-surjective, each g;; is Hp-injective, and (\/i‘j 9i5) V
(V; 9i|,) is Ho-surjective. Thereforc X VT is cellularly equivalent to (Vi;Yij)Vv
T.

Since the space X VT is an irreducible decomposition relative to T', there is at
least one pair (49, jo) such that Hy(gj, © fio| ) is an isomorphism. Thus Hg(gjoh,)
is a surjective map. The result follows as we set k = g;, |y . g

The next two propositions are useful to detect irreducible spaces.

PROPOSITION 3: Let X be a strictly simply-connected c-finite rational space. If
the n-skeleton Y of X satisfies the irreducibility property I, then X also satisfies
1.

Proof: If X is cellularly equivalent to a wedge V. ; X, then Y is cellularly equiv-
alent to the wedge \/'ie ; Yi, where Y; is the rational n-skeleton of X;. Therefore
dim Ho(X;) = dim Hy(Y;) > dim H2(X) for at least one 1. ]

PROPOSITION 4: Let Y be a strictly simply-connected c-finite rational space. If
the m-skeleton of Y satisfies irreducibility condition I, and the Hurewicz map
hqg: mg(Y) = Hy(Y') is zero for ¢ > m, then Y also satisfies I.

Proof: Tt is enough to consider the case where Y is obtained from a space X of
dimension m satisfying I by adjunction of n rational cells of dimension r > m,
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ie.,
( V S§‘1> AX Y
i=1 a

is a cofibration sequence. Denote by ' = the image of 7,_1 ().
Suppose f is a self-map of Y inducing an isomorphism on Hs. The map f
restricts to a homotopy self-equivalence fx of X. The commutative diagram

Tt (X) ——> T2 (V) = 1 (X) /K

lﬂr—l(fx) i’rr—l(f)

M1 (X) — 71 (V) = 11 (X) /K

shows that 7,_1(fx) maps K isomorphically onto itself. By the hypothesis on
the Hurewicz map, 7,_1(y) is injective. This implies the existence of a rational
homotopy equivalence ¥ making the diagram

(Vie1 57 Do — > X —>Y

11/1 fo
(Vi 5T g —> X —>Y

commutative.

When r = 3, X is a wedge of rational sphere SZ, and since h3(Y) = 0, Y is
also a wedge of rational sphere S2, and the result follows in that case.

We now suppose r > 3. If H,_1(¢) # 0, then X =2 ZVv S"™~1, and X does not
satisfy property Iy. Therefore H,._;{p) = 0. The naturality of the long exact
homology sequence of the cofibration sequence (\/i_, S} o % X - Y implies
the commutativity of the diagram

H(Y) === H,_,(V S} Q)

JHT(Y) ld/

Ho(Y) —=>H,1(V 575 Q).
This shows that H,(f) is an isomorphism, and therefore that f is a homotopy
self-equivalence. |

An important property of irreducible spaces is the following, very useful
proposition.
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PRrROPOSITION 5: Let X and Y be strictly simply-connected c-finite irreducible
rational spaces. Then X is cellularly equivalent to Y if and only if X and Y have
the same homotopy type.

Proof: It X ~ Y, by Proposition 2, there are Hqo-surjective maps f: X — Y and
g: Y — X. In particular Hs(g o f) and Hy(f o g) are isomorphisms and by the
irreducibility property I, f and g are homotopy inverse self-equivalences. |

3.2. CONSTRUCTION OF IRREDUCIBLE DECOMPOSITIONS.

PROPOSITION 6: Let X be a strictly simply-connected c-finite rational space.
Then X is cellularly equivalent to a simply-connected c-finite rational space Y
satisfying property I, and such that dim Ho(Y) = dim H2(X).

Proof: Let f: X — X be a continuous map that induces an isomorphism on Hs.
We denote by r the least integer n such that f) . is not injective, and by a an
element in 7, (X) such that m.(f)(a) = 0. Then f factors as f = f’ o i, where

XS (X Ug et L X 5 (X Uy e+,
We observe that the space (X U, e"1)g is cellularly equivalent to X and that
dim 7, (X Uy " 1) < dim 7, (X).

Let N be the cohomological dimension of X. We denote by C the set of
homotopy classes of strictly simply-connected c-finite rational spaces Y cellularly
equivalent to .U that have cohomological dimension less than or equal to N and
satisfy dim Ho(Y) = dim Ho{.Y}. For ¥ € C, let (YY) = dim 7;(Y"). We give the
set. of sequences

(n3(Y), na(Y). ... onn i (Y)

the lexicographic order, and we choose a space Y corresponding to a minimal
sequence.

If the Hurewicz map hy: 7n(Y) — Hn(Y) is nonzero, then Y is homotopy
equivalent to Y’ v S and we replace ¥ by Y. We can therefore suppose that
h v =0

Let f: ¥* — Y be a continuous map inducing an isomorphism on H,. If, for
some 7 < N, 7.(f) is not an isomorphism then Y is cellularly equivalent to some
space Y7 corresponding to a smaller sequence n;(}Y"’). Therefore f induces an

isomorphism on m¢ .
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Let (AZ,d) be the Sullivan minimal model of Y, and ¢: (AZ,d) = (AZ,d) a
minimal model for f. By hypothesis ¢ induces an isomorphism on (AZ)<N @
(AZ22Z)N. The map ¢ induces therefore an isomorphism in cohomology and so
f is a homotopy self-equivalence. This shows that Y satisfies I5. |

We now proceed to the proof of the decomposition theorems. We first note
that if X is cellularly equivalent to \/;c; X; then there is an Ha-surjective map
V(V;er Xi) = X. This directly implies that there is a subset J C I such that
X ~ VjeJXj with |J| < dim Ha(X).

THEOREM 3: Let X and Y be strictly simply-connected c-finite rational spaces.
Then X VY admits an irreducible decomposition relative to Y.

Proof: If the space X satisfies the irreducibility property I;, then by Proposition
6, we have a cellular equivalence X ~ Z with Z irreducible. If the space X does
not satisfy I, then X ~ ViE ;1 Xi, where by hypothesis, for each 4, dim H3(X;) <
dim H2(X). We can also assume that the cardinality of I is less than or equal to
the dimension of H2(X), and that none of the X; is built by the other ones. By
iterating the decomposition process we can suppose that the X; satisfy property
I, and by Proposition 4, property Is.

icr Xi VY such that

We now consider all the decompositions X VY ~\/
1. each X; is irreducible;

2. card I < dim Ha(X);

3. dim Ho(X;) < dim H(X) for each i € I; and

4. no X, is built by the space Y and the other X;.

To such a decomposition we associate a sequence
(m1,ma,...,my)

where ¢ = dim Ho(X), and m; is the number of components X; with dim H(X;)
= ] .

Since card I < dim Ho(X), Y m; < q. We give the set of such sequences the
lexicographic order, and we choose a decomposition corresponding to a maximal
sequence, i.e.,

Xvy~\Xvy
iel
The chosen decomposition is irreducible: Suppose that for some iy € I, we have
an Hs-surjective map

F=V# (

k k€K

\V xiv Y) — X,

iel
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Each fk|xi decomposes into g ; o hr; where gy ;0 T — X, is an Hz-injective
map and hgi: X; — T, is an Ha-surjective map. Each fi|, decomposes into
I, o my, where I: Z;, — X, is an Hg-injective map and mg: Y — Zp is an
Hj-surjective map. Moreover, ( \/k ;9k.0) V (V. lk) s an Ha-surjective map.

Suppose that there does not exist an integer k such that fkl is Hy-surjective.
Since Xj;, is not built by ¥ and the other X, no g, ; and no lk is Hy-surjective.
This means that dim Hy{T}, ;) < dim H2(X;, ) for each pair (k, ¢), and dim Hy(Z;)
< dim Ha(X;,). We deduce a cellular equivalence

XVY~ ( \/ )ﬁ) \Y (\/Tk,i()) \ (\/Zk) VY.
i#io k k

We decompose the T} ;, and the Zj into irreducible elements and we suppress
the components that are built by the other factors. This new decomposition
corresponds to a sequence that is strictly larger than the previous one, which is
impossible. |

THEOREM 4 (Unique decomposition theorem): A strictly simply-connected c-
finite rational space admits a unique (up to permutation of the factors) irreducible
decomposition.

Proof: Suppose that X admits two irreducible decompositions
x~\vyi~\ z.
iel jed

The cellular equivalence implies the existence, for each i, of Ha-surjective maps

f and g,
V (V) sy (V) e

leL Niel keK “Njed

By the irreducibility of the decomposition ViE ;Y of X, there exists Iy such that
the composite f o gy, ;: ¥; — Y; is Ha-surjective. Therefore, the map

Vifrsoamiom): \ VY=Y

k.7 kER jeJ

is also Ha-surjective. Here g ; denotes the projection map

\Z(\J/Zj)k — (\j/ZJ)k ~ Z;.



330 Y. FELIX AND P-E. PARENT Isr. J. Math.

By irreducibility, this implies that for some (ko, jo) the map fr, jo © Gko.jo © 9lo.i
is Ha-surjective. Therefore fy, j, is Ha-surjective. Let r(i) = jo. We have the
inequalities

Zr(i) <Y; and
Vz.ao<\VYic\ z,
iel i€l jeJ
and therefore
V Z.iy~ '\ 2.
i€l jed
Since Z,(;y could be equal to Z,;y for i # j, the cardinality of J is less than or
equal to the cardinality of I.

A similar argument shows that for each j € J there is an element s(j) € I such
that Y,(;) < Z;. This shows that |I| = |J|. In particular, the components Z,;
are all different, as are all the components Y,;). Since no Z; is built by other
Zr and no X; is built by other X, the applications r: I — J and s: J — I are
inverse bijections, and

Y~ Zygiy-
This proves the theorem. |

The determination of the irreducible factors X; in an irreducible decomposition
X ~ V;er Xi reduces in fact to the search of the retracts of X.

PROPOSITION 7: If X ~ Vz’e ; X; is an irreducible decomposition of a strictly

simply-connected c-finite rational space, then each X; is a homotopy retract of
X.

Proof: Since X ~ ViE 1 X;, there are Hs-surjective maps
=V Vx-Vxi ad g=\/g: /(X)) > X
k k iel ! el
Therefore, for ig € I, the composition map
Vfea: VYV (\/XZ) =\ Xi = X
k k 1 “iel el

is Hy-surjective. By property P, there are k and [ such that fyog| Xio: Xig = Xio
is a homotopy equivalence. This shows that X, is a homotopy retract of X. ]
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COROLLARY 1: Let X be a strictly simply-connected c-finite rational space such
that cach self-map of X Is either the trivial map or a homotopy self-equivalence,
then X is irreducible.

3.3. THE POSET OF GRADED IDEALS IN A FREE LIE ALGEBRA. The purpose
of this section is to prove the following theorem.

THEOREM 5: Let L be the free graded Lie algebra on two generators of the same
positive even degree, and L be the poset of finitely generated graded ideals in L.
Then there is an injection 6: (L, C) — (By, <) satisfying (1) <« 8(J) if and only
ifrc.j.

Proof: Let X be the rationalization of the space
[P*(C)1#P*(C)a#P*(C)3] Up2 (), vsz (PHO)1 x S3),
i.e., the rationalization of the pushout of the diagram

P%C); vV S2—— > P%(C); x S2

I

PY(C)1 #P*(C)a#P*(O)3

where 7 and j denote canonical injections. Since H*{#; Q) is surjective, the Mayer—
Vietoris exact sequence of the pushout yields the isomorphism of algebras

B*(X;Q) =Ker H*(3) — H*(j):
H*(PY(C); x S2) @ H*(PY(C) #P*(C), #P*(C)3) — H*(P*(C), vV 53)
= (@1, 22, 23)/ (2] - 25,51 — 25, 713, Toz3, 1123, 2772).

LEMMA 2: The space X is rationally formal.

Proof: Recall that a space X is rationally formal if its minimal model is quasi-
isomorphic to the differential graded algebra (H*(X;Q),0) ([21], [10], page 156),
or equivalently if X admits a Quillen minimal model, (L(W), d) with a purely
quadratic differential, d(W) C L*(W) ([22]). Since W, = H,41(X;Q) ([10],
formula 24.3), if i: § — T is the injection of a subcomplex and if H,(;Q) is
injective, then the Quillen minimal model of i, @;: I{Ws),d) = (L{Wr),d) is
injective. Therefore, if Y is the union of the formal subcomplexes Yy, and if each
inclusion Y, — Y induces an injective map in rational homology, then Y is also
formal. This applies directly to the space X. |
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Denote by a: S — QP3(C) the usual Hopf map, and by a; € 76(Q2P3(C);)
and ay € m(2P3(C)2) the corresponding elements in P3(C); and P3(C),. Then

LEMMA 3: The elements o) and o generate a free Lie subalgebra in 7, (QX)©Q.

Proof: Since X is formal, its minimal model, (AZ, d), is the minimal model of
(H*(X;@),0), )

p: (NZ,d) = (H*(X;Q),0).
By ([13]), this minimal model admits a second gradation, Z = p,5¢ Zp, such
that d(Z,) C (AZ)p-1,

Zo=Z§ = (z1,22.73), @(z1) =21, @(x2) =22,  @(3) = 73,
7y = (y1, Y2, U3, 21, 22, 23),  dyy = T3,  dys = 2213,  dyz = 2123,
dz = x‘{ — 1‘%, dzg = xé - :ng, dzg = x?xg,
lyil = ly2l =3, lys| =5, |a]=]|zn[=]s|=7,
9(Z>1) = 0.
The model of the injection k: P*(C); -+ X is given by

K: (AZ,d) = (Ma1,a9),d), |a1] =2, laal=7, daz=aj,

K(zl) = ay, If(ll) = Qa9,
K(z2) = K(z3) = K(22) = K(z3) = K(y:) = K(Z21) = 0.

Let & € m7(P3(C)) and &; and a3 € m7(X) be the elements corresponding by
adjunction to «, o; and as.

Recall that the minimal model (AR, d) of a simply-connected finite-type CW-
complex S is equipped with a natural isomorphism R™ = Hom(m,(S5), Q). Here
ay: m7(P3(C)) — Q satisfies (ag; &) = 1. By naturality, we have

(z1;01) = (21317 (k) (@) = (K (21), &) = (a2: &) = 1.

Similarly, (2, &2) = 1.
By ([10], 15.c), the minimal model of the 2-connected cover of X, X[2], is the
quotient differential graded algebra

(AZ[(z1, 2, 23), d).

The quotient map

V: (AZ @ A(r, 8,t), D) = (AZ © A(1, 8,t) [ (21, T2, 3,7, 8, ), D),

Ir|=1s|=t|=1, dr=mx, ds==x, dt=uzs3,
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is a quasi-isomorphism of differential graded algebras. On the other hand, the
quasi-isomorphism ¢: (AZ, d) 5 (H*{X;Q), 0} extends to the quasi-isomorphism

@ ©1: (AZ © Ar,s,t), D)y = (H*(X; Q) © A(r, s,t), D).
Denote by 6 a homotopy inverse of 1. For degree reasons, we have

0(z1) = 2 —ras +tad,  0(z2) = 29 — sS4+ tal.
((pO1)08)(21) = —ra} +ta3, ((pO1)00)(25) = —sxj + ta3.

This shows that ((¢©®1)06)(z1)- ((¢ O 1) 06)(z2) = 0, and implies the existence
of the morphism p in the following diagram, p(u) = ((¢ © 1) 0 6)(z1), p(v) =
(¢ ©1)08)(z2).

(AT, d) ———— (AZ/(x1, 22, 73), d)

le :l(cp@l)oO

(Alu, v)/(uv),0) —2> (H*(X;Q) © Alr, 5.), D).

Here ¢ is the minimal model of (A(u,v)/(uwv),0), (AT, d) = (A(a, b, c,...),d), with
g(a) = u, (b} = v and d(c) = ab. The differential graded algebra (AT, d) is the
minimal model of §7V S”. The morphism j follows from the Lifting Lemma ([10]
Proposition 12.9): (¢ @ 1)of o p ~ poe. The coustruction of j can be realized
by induction on the degrees of the generators. We can therefore suppose that
pla) = z and p(b) = z2.

The geometric realization functor ([21], [10], Section 17) transforms g into a
continuous map p: Z[2)o — (ST V S7)p. Denote by & and &, generators of
m7(S7T Vv §7) @ Q such that {(a,&;) = 1 and (b, &) = 1. Then, (a,77(p)(a;)) =
{ple), a&1) = 1. Therefore, 77{5)(G1) = @;. In the same way, 77(p)(&s) = 3.

Recall finally that m,((S7 Vv S7)) © Q is a free Lie algebra on the generators
wy and wy corresponding by adjunction to & and ws. Since 7, (25) @ Q is a
morphism of graded Lie algebras, the elements «; and as generate a free Lie
subalgebra in 7,(QX) O Q. 1

Let ¢: X — X be a self-map. Denote by ¢ the induced automorphism of the
minimal model (AZ,d) of X. With the notations of the proof of Lemma 3, a
computation shows that, for some o € (, we have

plar) = axry, @(xy) = tary and P(x3) = tazs.

We then deduce that 7.(Q¢)(a) = a*a; and 7,{Qp)(an) = a*ay. Therefore,
the graded ideals of the free Lie algebra F' on «; and a9 are preserved by the
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homotopy self-equivalences of X. We denote by L the sub-Lie algebra generated
by [a1, [a1, a2]] and [ag, [0, aa]).

Let I be a finitely generated graded ideal in L. Choose a minimal system of
generators w1, . ..,wy, of I such that each w; is a graded homogeneous element of
I. We define the space

Xr=XUg elorl 2. .. Ug elonlt2,
Since each self-map of X is either the trivial map or a homotopy self-equivalence,

by Corollary 1, X is irreducible and thus X7 is also irreducible.
Let £ be the poset of finitely generated ideals in L; then the correspondance

I — X;
induces a morphism of posets
6: (L,C) = (Bo, k).

By Proposition 5, this map 6 is injective. 1

4. Constructions of strict inequalities in B and By
In this section we introduce tools to construct strict cellular inequalities.

PROPOSITION 8: Let X VT be an irreducible decomposition relative to T with
X a simply-connected irreducible m-dimensional finite CW-complex Bousfield
equivalent to the sphere S?. Let a € my(X) such that ¢ > m and @ ©1 # 0 in
74(X) © Q. Then we have strict inequalities
XVT & (X Upge™ Y VT &T and XoV Ty < (X Uq e9h)g v Ty < To.

Proof: Since X is Bousfield equivalent to S?, £X builds S°, and therefore
X builds any space of the form X U, €™ with n > 4. The cellular injection
X <Y = X U, 7! shows that X <« Y. Suppose the spaces X V T and
Y VT are cellularly equivalent. The decomposition of X V T being irreducible,
by Proposition 2, there is an Hy-surjective map g: Yo — Xj. Since X is the m-
skeleton of Y, and the space X is irreducible, g restricts to an Ha-surjective map
g9x: Xo — Xo. Moreover, X being irreducible, gx is an homotopy equivalence.
Denote by ig: Xo — Yo the canonical injection. Then the commutativity of the
diagram

Xo 25 X,

o ]

Yo — X,
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implies the injectivity of my(io), which is impossible because o @ 1 # 0. ]

PROPOSITION 9: Let X be a strictly simply-connected irreducible m-dimensional
finite CW-complex. Let o € my(X) and 8 € =.(X) such that

1. [a] =0 in mge(X U e"t1y;

2. a@ 1 and B © 1 are nonzero in 7, (X) @ Q; and

3. m<r<aq.
Then, we have strict inequalities

Y = XUge™! & Z = XUge™! and Yo = (XUqe?t)g < Zo = (XUge™ ).

Proof: The class [a] being trivial in 7,(X Ug €"*!), we have a homotopy equiv-
alence
YUgetl~ zvgrtt

Therefore Y builds Z. Moreover, the inequality is strict, and even strict ratio-
nally. Indeed, suppose that Zy <« Y. Since X is irreducible, the same is true for
Y and Z. Thus there exists an Hy-surjective map f: Zg — Yp. Since X is the
m-skeleton of ¥ and Z, and X is irreducible, the restriction fx of f to X is a
homotopy self-equivalence.

Consider the following commutative diagram in which the vertical maps are

injections of skeleta:

‘Y(] —fx—> 4\’0

/
Zy —— Yo

The homomorphism 7,(j) being injective for s < q¢ — 1, the map =,(7) is also
injective for s < ¢ —1, but this is impossible since r < ¢ and 7,.()(8) = 0. 1

5. The space Rz for an irreducible decomposition Z v T with Z elliptic

In this section all spaces will be strictly simply-connected c-finite rational spaces.
Our starting point is an irreducible decomposition Z v T, relative to T, with Z
elliptic. Our goal is to construct another irreducible decomposition relative to T,
R, v T with Rz hyperbolic, and

ZVT € R;VT <T.

We fix first some notation: Let n be the least integer m such that 7>9,,(Z) = 0,
« a non-trivial element in mg,_1(Z), N the cohomological dimension of Z Vv T,
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and M an integer greater than 2 - dim H,,(Z V T). Recall from the introduction
the construction of Rz:

2M M
whenn =2, Ry = ({Zx (\/Pf’(C))]Ua+w ) , Zﬂm 15 Bai
i=1

=1

and

M
whenn > 2, Rz = ([Z X (\/ ST )] Ua+tw € n) y W= Z[ﬂm—hﬁ%],
0 i=1

where the spaces P¥(C) are different copies of the projective space PN (C), the
spaces S are different copies of the sphere S™, and the ; are generators of
72(PN(C)) or 7a(SP).

Throughout section 3, let X; be either (P (C))q or (SP)o according to whether
n = 2 or n > 2. Moreover, in what follows all rational spaces are supposed to
be equipped with a rational cell decomposition such that the suspensions of the
attaching maps are trivial. We denote by T the n-th skeleton of the space T'.
In the same way all continuous maps f: T'— V are supposed to be cellular, i.e.,
for any n, f(T™) C V™. The properties of Rz are contained in Propositions 10
to 13.

LeEMMA 4: The image of @ by the Hurewicz map hoy—1: Ton-1(Z) = Han_1(2)
Is zero.

Proof: Let (A V,d) be the Sullivan minimal model of the space Z. Since V" =
Hom(m,.(Z),Q), V>2"~1 = 0. The Hurewicz map hs,_; is dual to the map
induced in homology by the projection of complexes

/\ V,d) — /\ V//\ *V.d) = (V,0).

If hgn_1 # 0, then hgp_1 # 0 and (A V,d) contains a cocycle a of the form a =
> i>1 % With z; € /\i V and z; # 0. Denote by V' a graded complement of Qz;
in V. For degree reasons, d(V') C /\22 V'. We have therefore an isomorphism of
differential graded algebras

(AV-d) = (A\V',d) & (\a.0).

This implies that Z = Z’' x §2"~1, which is not an irreducible space. |

Lemma 4 implies that the homology class [e2"], generated by the cell €2 in
the homology of the cellular chain complex of Rz, is non-zero.
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LEMMA 5: We have inequalities

ZVT K RzVT & T.

Proof: The only nontrivial case is the case n = 2. Since N is the cohomological
dimension of Z V T, there exist Ha-surjective maps Z — PV (C), and this shows
that Z < Ry. |

ProrosiTiON 10: ZVT <S< RzvT.

Proof: Suppose there exists an Hp-surjective map

o=\Ve: \/ RzVT) > Z
k k€K

When n = 2, the restrictions ¢|pv y: P (C) = Z induce the zero map on H,
by the choice of the integer N. Therefore, for all values of n, the map ¢ induces
an Ha-surjective map

¢ = \/(wIZvT)i \/(Z VT)— Z.
k k

By the irreducibility hypothesis on Z Vv T, there is an index kg for which the
restriction ¢y, |z: Z — Z is an Hp-isomorphism. Since Z is irreducible, ¢y, |z is
a homotopy equivalence. We denote by ¢ a homotopy inverse. We can therefore
suppose that i oy, Rz — Z restricts to the identity on Z.

We denote by 8 the restriction of ¥ o g, to Z x (\/12_3_41 X;). The map

oM
9: Z x ( \/ Xi) -2z

=1
extends to Rz and is the identity on Z. Therefore,

0 = m(0)(a +w) = a+ 7 (0)(w).

Let aut; Z, as usual, be the (strictly associative) monoid formed by the homo-
topy self-equivalences of Z, and ev: aut;Z — Z the evaluation map at the base
point. The map # induces a map § making the following diagram

2n—1 2n~-1
S S

(V?:N{ )(i)O o autlZ = A
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commutative up to homotopy.
By the universal property of the James functor J (see, e.g., [23], Theorem VII,
2.5), 8 factors through J(\/?i/[1 X;), ie,

2M . 2M ,
=1 i=1

Recall that J(S) = QXS and that the Hurewicz map hog: m (QE) — H,(QFE) is
always injective for finite rational spaces ([10], Theorem 16.10). We then consider
the following commutative diagram:

7T2n—1(V?i/Il Xi) BTN H2'n—1(V?£/[l Xi; Q)
Tan1(4) le,._l(i)
Tanet (JOV2 X)) 25 Hy TV X005 Q)
Tan—1(8')

Ton—1(aut1Z)

m2n—1(ev)

ﬂ'gn_l(Z).

Since man_1{ev o @' o i)([w]) = —[a] # 0, we have mg,_1(3)([w]) # 0, and thus
hyvx,) 0 Tan—1(i)([w]) # 0. Therefore hy, x, ([w]) # 0, which is impossible. |

Let p: Rz - R = ((V?fl X;) U, €*™)o be the canonical projection obtained

by mapping the subspace Z to the base point.
The cohomology of R’ is given by

H*(RI)ZQ[.'E],...,Z‘QM]/I, Ixilzn,
where [ is the ideal generated by the elements
T2i-1T2 — T1X2, 1=2,...,M;
zix; if [i — 5| > 2; and
¥ i=1,...,2M,

withp=2ifn>2, andp=N+1ifn=2
The projection p induces an injection in rational cohomology. Let €' be the
cohomology class given by z122 € H**(R'), and 2 its image in H**(Rz).
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LEMMA 6: Let g: S — R’ be a continuous map. Suppose that dim H,(S) < M;
then H*"(g)(Q') = 0.

Proof: There exists, by hypothesis, a nonzero element Zf__l a;72i—1 € H*(R'),
with o; € Q such that H™(g)(3 , iz2i—1) = 0. Choose iy with oy, # 0. In this
case,

M
0= HZn(g)(Zaé1’2i~l '12i0> = H*"(9) (i Z2i0-122i) = iy H2"(g)(R),
i=1

which implies that H?"(g)(Q) = 0. ]
ProprosITION 11: Rz VT <S< T.

Proof: Suppose we have an Ha-surjective map

f: \/ T- Rz
keR
By the cellular approximation theorem, f is homotopic to a map ¢ that maps
(Viex T)?" ! into Z x (\/ffl X;). We have therefore a commutative diagram

(Vier 7" ————Z x (V22 X)) ————Z

l ;

(Vien T)*" — ((Z x (Vfiwl Xi)) Yatw €0,

in which the vertical lines are canonical injections, and ¢ is the standard
projection on the first factor.

The obstruction to extending g|<Vk Ty2n-1 t0 @ morphism ¢': (\,x T)*" —
Z x (\/; X;) is a linear map

obta) Hon( \/ T) = mana(2) n(\/x>

keK

If the obstruction is zero, then g o g’ extends to a map g: V,c, T — Z, since
T>2n(Z) = 0. The homomorphism H;(g) being surjective, Hz(g) is also surjec-
tive, and this implies that T' <« Z, which is impossible by Proposition 10 and
Lemma 4.

The obstruction map ob(g) is thus nonzero. There is therefore some k €
K, with corresponding space T' denoted by 7}, such that ob(g): Hon(Ty) —
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Ton—1(Z) ®Ton—-1(V,; Xi) is nonzero. Since the image of ob(g) is contained in the
kernel of 7g,—1 (1) = Q(a + w), there exists a (2n)-cell in T} with attaching map
@: 82"~ 1 — (T})?»~1. This makes the following diagram commutative,

S2n S S2'n—

(T —— 7 x (VM X,)

L,

((Tx)* "1 Uy €2M)g ——— Ry,

where the vertical lines are cofibration sequences. Since the suspension of the
attaching map ¢ is trivial, Hs,_1(p) = 0. The naturality of the homology long
exact sequence of a cofibration shows that [e2"] belongs to the image of Han(g).
Therefore H2*(g)({2) # 0. By composition with the projection p: Rz — R’ we
obtain a map pog: ((Tx)>" "1 U, e*™)p — R' such that H**(pog)(') # 0, which
is impossible by Lemma 6. |

PrOPOSITION 12: When M > 2, the space Rz is hyperbolic.

Proof: The space L = Vf\il X, is clearly a retract of Rz. Since the cohomology
of L does not satisfy Poincar duality, L is a hyperbolic space, and thus its rational
homotopy grows exponentially. Since L is a retract of Rz the same is true for
Rz, and therefore Rz is hyperbolic. [ |

LEMMA 7: Let f: Rz VT — Rz be a continuous map. Then f is homotopic to
a map g satisfying g((Z x ( V2M XN VT)Y" C Zx (\/222'[1 X

Proof: Since the (2n — 1)-skeleta of the spaces Rz and (Z x (V2M X)) coincide,
f maps (Rz VT)?> !into (Z x (\/?i’l1 X;)). We want to prove the existence of a
map f’ making the following diagram

(2 x (V2™ X)) v Tyt L 2 (V2 X

l o

(2 x (VM X)) v Tyen —L 2 5 (VP4 X))

L,

RyvT Rz
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commutative (up to homotopy). In the diagram, the vertical arrows are canonical
injections, and f; is the restriction of f. The obstruction to the existence of f/
is a linear map

ob(f1): H2n<<Z X (\_/Xi)> Vv T) - Q- (a+w).

Suppose that the obstruction is nontrivial. Then for every 2n-cell of Z x (\/, X;)
or of T there is an integer k # 0 such that the restriction of f; to

fi: (((Z % (\/‘Yi)) VTP U, ef")o — ((Z x (\/ Xi)) Uatw €0 = Rz
satisfies Hon (f1)([e3"]) — k[e®"] € Hon(Z x (V, X))
Let
Qe H((Zx (\/ Xi)) v~ U, edm)

be a cohomology class satisfying Q;([e?"]) = 1. Since Q([e*"]) = 1, we have
H™(f1)(Q) = k1.

By construction, 2" is a 2n-cell of either T or Z x X;. Let S be T or Z x X;
according to which space this cell is attached to. The composition po f1|5 satisfies
H2(po fi]5)(f) # 0 in contradiction with Lemma 6. This contradiction shows
that the map ob(f:) is trivial. |

LEMMA 8: Let f: Rz — Rz be a continuous map such that
oM 2n M

f(Zx(\/XZ-)) ch(\/X.é)
=1 =1

Let ¢: (Z x (\/ 1X ))** = Z be the canonical projection and we suppose that
gof: Z?" — Z extends to a homotopy self-equivalence f' of Z. Then f: R; — Rz
is also a homotopy self-equivalence.

Proof: Let i be a homotopy inverse of f': Z — Z, and let ¢ = (¢ X id) o f.
Then the following diagram

(ZxV, X —L = (Zx V, X)) — 2 L 2%V, X

| | |

(Z x V; Xi) Ug o €2 Rz ((Z x V; X3) Upia)+w €™)o
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commutes. We have

mon—1{g){a) =a+a’, withd € 71'2,1_1(\/ X;), and

mn(g)(ki) = li +mi, withl; € 7,(2), m; € ma(\/ X0),
where k; denotes a generator of m,(X;). The map qog: (Z x (V, X:))>" = Z
extends to Z x (V/,; X;) since 7>9,(Z) = 0. This shows that the Whitehead
brackets [l;, —] are zero in 7,(Z). In particular,

M M 2M
Tan—1(9) (@) =Y man_1(9)((kaim1. kai) = Y _[mai1, mai] € m2n1 ( V Xi)-
i=1 i=1 i=1
Therefore 7. (g)(a + w) = a + w', with W’ € m2,—1(V,; Xi). Since g extends to a
map ¢’ from Rz into ((Z X \/; Xi) Uy(a)+w €")o. We necessarily have

Y(a) =va, W =ww, and H,(f)[e*™]=v[e™],

for some v # 0. In particular, H2"(f)(£2) = 1. It follows that H™(f): H"(V,X;)
— H"(Rz) = H"(Z)® H"(\, X)) is injective.

We proceed to prove that H™(f) maps H™(V/, X;) into H"(V, X;). Suppose
this is not the case. Denote by iy the least integer i such that H™(f)(x;) ¢
H™(V; X;). Then we have

H'(f)(x:)=y+z yeH"(\/X), z€HYZ), z#0.
Let V be the subspace generated by the z; with |[i — ig] > 2. Clearly,
V -x;, = 0. On the other hand, for degree reasons, V' contains a subspace
W of dimension greater than 2M — 2, such that H"(f)(W) C H"(V, X;). In
this case, dim H2*(f)(W - z;,) = dim(H"(f} (W) ® Qz) > ZM — 2, which is
impossible.

Therefore, H"(f) maps bijectively H"(V/, X;) into itself. We conclude that
H"(f) is an isomorphism, and that H™(\/, X;), H*(Z) and § are in the image
of H*(f). Since H*(Rz) is generated by those elements, H*(f): H*(Rz) —
H*(Ryz) is an isomorphism. ]

PROPOSITION 13: The decomposition Rz VT is irreducible relative to T.

Proof: We first verify the irreducibility property (P2). Let

f=Vf: V(RzvT) - Ry
k

keEK
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be an Hy-surjective map. By Lemma 7, each map f; maps the 2n-skeleton of
ZV T into Z x (\/2M X;). Since 7>9,(Z) = 0, the map p o fi|zvT extends to a
map grp: ZVT — Z.

If n > 2, Ho(gx) = Ha(fx), and thus V/, g is Ho-surjective. If n = 2,
by the choice of N, fr maps each Ho(X;) into Hy(\/; X;). Therefore \/, gi :
Viex(ZVT) — Z is also Hp-surjective.

Now, in both cases, since Z V T is irreducible relative to T, there exists k such
that gx|z: Z — Z is a homotopy self-equivalence. It follows from Lemma 8 that
fx|Rz: Rz — Rz is also a homotopy self-equivalence.

We now verify the irreducibility property (I3). Let f: Rz — Rz be a map
inducing an isomorphism on Hy. By Lemma 7, f maps the 2n-skeleton of Z into
Z x (V2M X;). Since m>2,(Z) = 0, the map po f extends to a map g: Z — Z.

If n > 2, Ha(g) = Hz(f), and thus g is a homotopy self-equivalence. If
n = 2, by the choice of N, f maps each Ha(X;) into Hg(\/ihf X;). Therefore,
Hy(f): Ho(Z) — Hy(Z) is a surjective map. Since Z is irreducible, ¢: Z7 = Z is
a homotopy self-equivalence.

Finally, in both cases, Lemma 8 implies that f is a homotopy self-
equivalence. |

6. Proof of Theorem 1

In this section all spaces will be strictly simply-connected c-finite rational spaces.
We begin by proving the theorem in a special case.

PROPOSITION 14: Let ZVY < Y be a strict inequality with ZVY an irreducible
decomposition relative to Y, and Z a hyperbolic space. Then there are infinitely
many non-comparable simply-connected finite rational spaces Z,, n > 1, such
that

IVY L Z, Y.

Proof: We denote by (L(}"),d) the Quillen model for Z. In this case, the group
Aut(L(V) ©g C,d) is a finite dlmensmnal complex algebraic group that acts, for
any integer ¢, in an algebraic way on the complex vector space Hy(L{V)©gC, d) =
ﬂ'q+1(Z) @ C.

Let M denote the cohomological dimension of ZV Y, and N the dimension of
the algebraic variety Aut(I(V') ©g C,d). We choose an integer ¢ > M such that
dim mg41(Z) @ Q > N, and we choose a nonzero element o; € Hy(L(V'),d). In
this case a; - Aut(L(V') &g C,d) is a constructible set ([17], p. 33) of dimension
less than or equal to N. Therefore, there exists an element a; € Hy(IL(V),d)
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such that ag & a; - Aut(L(V) ®¢ C,d). We construct in this way a sequence of
elements (ay, as,...) such that for i # j, a; € a; - Aut(L(V) ®q C,d). Suppose
we have constructed «y,...,q,, satisfying the above requirement. The union
UL, a; - Aut(L(V) ©g C),d) is a finite union of constructible sets of dimension
less than or equal to V. Since we are in characteristic zero, this union is therefore
also a constructible set of dimension less than or equal to N. We then choose
am+1 € Hy(L(V),d) such that a1 € Uin, @i - Aut(L(V) ©g C), d).

We denote by a,, the element of m,4+1(Z) corresponding to a, by the
natural isomorphism Hy(I(V'),d) = 7q41(Z), and we consider the spaces Z,, =
(Z U,,, e772). Since q is greater than the dimension of Z Vv Y, hy Proposition 8,
we have

YVZ&Z, LY.

Suppose now that Z,, < Z,, for some n # m. This implies the existence of an
Hj-surjective map

F=Vf: V Zn— Zn
k

keK
The restriction of f to its skeleton of dimension M is an Hj-surjective map
f: Vi(ZVY) = Z. Therefore, for some ko € K, fi,|z: Z — Z is a homotopy
equivalence. Since fi, is a map from Z,, to Z,, we have 74(fi,)(am) = an. This
implies that o, € am - Aut(L(V') ®g C, d), which is impossible by construction
of the a;. |

Proof of Theorem 1: Suppose that X & T is a strict inequality between strictly
simply-connected c-finite rational spaces. Clearly X ~ X v T & T. We then
take an irreducible decomposition of X relative to T,

XN\n/XivT.

=1

Necessarily in the following sequence of inequalities

X~/ XivI<\/XivI < < X, VT < T,
i>1 i>2

one must be strict. Suppose X, V (V5 ; X;VT) & Vs, +1Xi VT. Then, we
write Z =X, and Y =/, , X; VT, and we have

ZVY &Y.
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When Z is hyperbolic, we apply Proposition 14 to conclude, and when Z is
elliptic, the space Rz comes into play. By Propositions 10 and 11, we have

ZVY € RzVY LY.

By Proposition 12, Rz is hyperbolic, and by Proposition 13, Rz VY is an

irreducible decomposition relative to Y. We then apply Proposition 14 to the
S

inequality Rz VY < Y. ]

7. On the density of the poset B

7.1. CONSTRUCTION OF POSET INJECTIONS. Let X be an irreducible hyper-
bolic simply-connected finite CW-complex that is Bousfield equivalent to the
sphere S%. Let w be an element as in the statement of Theorem 2. We write
w1 =w, m=dim X, and ¢ = cat(X). We thus have

(a) w1 @1 € my, (AX) D Q;

(b) 2¢1 +1 > m; and

(¢) w1 O1¢ R(X).
The Lie ideal generated by wy © 1, denoted [“!, is therefore infinite dimensional.
In particular, 12}, is also infinite dimensional as the following lemma shows.

LEMMA 9: If I is an infinite dimensional Lie ideal in the rational homotopy Lie
algebra 7. (QT) © Q of a simply-connected finite CW-complex T, then I e, IS
also infinite dimensional.

Proof:  Suppose dim lepen, < 00, and denote by r the maximal degree of a
homogeneous element of Il.yen. Then I, = @sw I is a graded Lie algebra
concentrated in odd degrees. Therefore, I, is abelian and contained in R(X).
Since R(X) is finite dimensional, this would imply I is finite dimensional, which

contradicts the hypothesis. |

We choose an element wy € mg4, (2X) such that we © 1 € I** and

Y dimIg >e+1, and wy®1¢ R(X).
s<q2

In particular, some multiple of wy is in the kernel of the map mp,, (2X) —
Tags (X Ug, €291%2)), We replace wy by this multiple, and we deduce a natural
induced map

X U, et L, x Ua, e2nt2,
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The ideal 7“2 generated by wy©1 is infinite dimensional. Therefore, by Lemma
9, we can choose an element w3 € 24, (2X) with w3 @1 € 1“2, w3 @ 1 ¢ R(X),
and

> dimIgE > e+ 1.

8<4q3
Once again we replace w3 by some multiple so that w3 belongs to the kernel of
the map mag, (QX) — maq, (X Ug, e20212)).

We continue by induction and construct a sequence of elements

W=W1,Wa, .y Wpy...

such that for each n > 2,
(a) wp, ® 1 belongs to the ideal I“»-1 generated by w,_1 © 1;
(b) |wn|=2gn and 3, . dim ;77! > c+ 1
(¢) wn©1 ¢ R(X) and
(d) wy € Ker(mag, (X)) = moq, _, (UX Uy, _, e2an-1+2)),
By property (d), the identity map on X extends into a continuous map

far Xn = (X Ug, 2?) — X, = (X Ug,_, e29n-1+2),
We obtain in this way an infinite sequence of spaces and maps
X o X IS Xy — o 5 X = (X Ug, e21+2),
We consider now in more detail the map f,: X, = X,_1.
LEMMA 10: The ideal IY) generated by w,_i in 7.(Q2X,) © Q is infinite

dimensional.

Proof: Let I = IV, By construction, I5; = I;’s"‘l for 2s < 2q,. The choice of
wy, was made in order to have dim I.,., > ¢+ 1. On the other hand, since X,
is obtained from X by adjonction of a cell, the Lusternik—Schnirelmann category
of X,, is less than or equal to ¢+ 1. Therefore

dim Ieyen > ¢+ 1 > cat(X,).

This implies that I is not contained in R(X,), and is therefore infinite
dimensional. ]

Once again, we choose an element ag € wo, (X,,) such that

ay @1 € Iy,;

l2 > qu;

as @1 ¢ R(X,); and
Zr<£2 dim I, > ¢+ 2.
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We then construct the space
‘X’n_LQ = (‘X’n Ua2 €|a2|+2).

Since as © 1 € 1, the class of ag in mg, (Xn—1) is a torsion element. Replacing
a2 by a multiple, we can assume that [ag] = 0 in 7. (X, _1).
We denote by I® the ideal generated by w,_1 @ 1 into 7, (QX,_12) ® Q.

LEMMA 11: The ideal I® s infinite dimensional.

Proof: By constructiondim Iéf) = dim I5,, for r < l5. Therefore, dim I®) >
¢+ 2 > cat(X,-1,2), and thus I3 is not contained in R(X,_; ). |

Let X153 = {(Xpn-1.2 U, el*s1+2) where a3 is chosen in Tap, (2X,,—1,2) with
the following properties:

azO1le 1(3);

the class of a3 is zero in mo, (X,—1);
{3 > l9;

a3 @1¢ R(X,_12); and

S, dim IS > ¢+ 3.

This process constructs an infinite sequence of spaces and maps

- > - - fn— m oxr
‘Xn = AXn—l,l — ‘Xn—1,2 o "Xn—l‘m—l —1> ‘\n—l,m Tt
defined inductively as follows. The ideal I(™ generated by w,_1;©1 in the graded
Lie algebra 7, (Q2X—1,m-1) © Q is infinite dimensional by construction, and we
choose an element a,, € 7oy, (2X,,—1,m—_1) such that

am 1 e I,

the class of a,, is zero in mq; (Xp—1);
lm > lm—l;

0 01 ¢ R(Xp—1.m—1); and

S, GimIZY > ¢+ m.

The last condition forces the ideal I(™*1) to be infinite dimensional. The space
Xn_1,m is defined by

- (Y AU +2
)\n—l,m - (An—l‘mfl U&m e )

Since the element [a,,] = 0 in 7y, (X,-(), the identity map on X extends to
maps g Xn—tm — Xp-1, such that gnfo—1.m =~ gm-1-

An important property of the above construction is that we stay at each step
in the category of hyperbolic and irreducible spaces.
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ProrosiTiON 15: The spaces X,, and X, ,, are hyperbolic and irreducible.

Proof: The spaces X, , are hyperbolic by construction because m,(2X, ;) ® Q
is infinite dimensional. The spaces X, ; are irreducible because their m-skeleton
X is irreducible, and the Hurewicz map h,: 7,(Xp,4) © Q = H. (X, q; Q) is zero
for r > m. |

An iterative use of Propositions 8 and 9 shows that the spaces X, , define
different cellular classes. In particular, we have the following sequences of strict
inequalities:

XL Xy € Xpoy - € Xy € Xy, and
Xn = Ap-1,1 <s< Xn—1,2 <"< Xn—1,3 <8< e <S< Xn—l,m <s< tee <2 Xn—1~

7.2. PROOF OF THEOREM 2. We use the representation of the rational numbers
as finite simple continued fractions. Let

[IL'],.Tg, cee 7x’n] = z1+;+
ED)

S S
- 1
In—l+1n .

Such an expression is called a finite simple continued fraction if all the x; belong
to N\{0}. Any simple continued fraction of the above form represents a ratio-
nal number of ]0,1]. Conversely, any nonzero rational number in ]0,1] can be
expressed as a finite simple continued fraction of the above form ([19], Theorem
7.2). Moreover ([19], Theorem 7.1), if [ay,...,a;] = [b1,...,b,] with a; > 1 and
b, >1,then j =n and a; = b;, i =1,...,n. On the other hand, we have

[a1,...,an, 1] =[a1,...,an +1].
We clearly have the following relations:
[a1,...,a2,] <[a1,...,a2,, 7+ 1] < [a1,...,a2,,7]
< ay,... 02,1 = [a1,... a2, + 1],
[a1,... a2n—1+ 1] ={a1,...,a2n-1,1) < [@1, ..., G2n—1,7]
< a1, - a2n-1,7 + 1] < [ay, ..., G2n-1].

Let us come back to the construction. Starting from (X,w) we have con-
structed new pairs (Xp 4, @g+1). We can start with these pairs and apply the
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same construction. This defines new spaces with new homotopy classes, and the
process can be extended over and over by induction. Let

(X, w)pg = (Xp,g» ¥g+1),

and define the map fx, by the following inductive process:

fX,uJ(O) = X;
fxw(l) = X Ug e*07? = Xy;
fX,w[p] = Xp;

fX,w[pv Q] = Xp.q; and

FX w102, @00, Ty 8] = Fl (X iw)ayan)anias) Vagy1sazy 1T S)-

This map is well defined because, by construction,
Xpa = Xpn

and
f(X,w)p,q [1] = Xp,q+1~

It follows directly from Propositions 8 and 9 that the map fx ., is an injective
morphism of posets. |

7.3. EXAMPLE OF HYPERBOLIC IRREDUCIBLE FINITE CW-COMPLEXES. For
n > 3, the connected sum of n copies of P%(C), ie., X, = #"P%(C), is an
hyperbolic irreducible finite CW-complex. Since my(X,) = Z", X,, is Bousfield
equivalent to S2. The space X, is obtained from the wedge of n spheres of
dimension two, S v S2V ---V 52, by adding a four dimensional cell along the
element

an = [ay, a1] + [ag, az] + - -+ + [an, @),
where a, represents the identity map on the sphere S2, while [—, —] denotes the
usual Whitehead bracket. Since the cohomology of X, is not generated as an

algebra by only one generator, the element ¢, is inert ([12], [10]). This means
that the cellular injection

S2yvSiv...vs? X,

induces a surjective map on the rational homotopy groups. Let ¢,: X,, =& X1
denote the map obtained by collapsing the sphere S2. The commutativity of the
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diagram
S2vS2v...v 2

L

Gn -
Xp————— Xno1

shows that ¢, induces a surjective map on the rational homotopy groups when
n > 4. This implies ([10], Theorem 37.3) that K, = Ker 7, (Qq¢,) © Q is a free
Lie algebra on at least two generators. We choose an element w, € 7>6(Q2X,)
such that

1. w, ®1 is a nonzero element in K, and

2. [wn] =0 in 7 (Xp—1).
Clearly w,®1 ¢ R(X,), and the pair (X,,,w,) satisfies the hypothesis of Theorem
2.
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