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ABSTRACT 

A class C of pointed spaces is called a cellular class if it is closed under  

weak equivalences,  a rb i t rary  wedges and  pointed homotopy  pushou ts .  

The  smallest  cellular class conta in ing X is denoted by C(X), and  a par- 

tial order relat ion << is defined by: X << Y if Y E C(X). In this  text  

we invest igate  the  sub  part ial  order sets  genera ted  respect ively by sim- 

ply connected  finite CW-eomplexes  and  by rat ional  spaces. For ra t ional  

spaces we prove a unique  decomposi t ion  theorem,  a densi ty  t heo rem and  

the  exis tence of infinitely m a n y  non-comparab le  e lements .  We then  prove 

the  densi ty  t heo rem for a generic class of finite CW-complexes .  

1. I n t r o d u c t i o n  

Cellular classes were introduced by E. Dror Farjoun [8] in the context of Bousfield 

localization and colocalization theories [2]. The aim of this paper is the study of 
the properties of the lattice formed by cellular classes. 

For the sake of simplicity we restrict ourselves to the family of strictly simply- 

connected CW-complexes, i.e., simply-connected CW-complexes with nontrivial 

7r2. Similar results can easily be obtained for the category of (2n - 1)-connected 

finite CW-complexes. A class C of pointed spaces is called a cel lular  class if it 

satisfies the following three closure properties: 

• (closure under weak equivalences) if A ~ C and B ~_ A, then B E C; 

• (closure under arbitrary wedges) if {Ak}  E C, then Vk Ak C C; and 
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• (closure under pointed homotopy pushouts) if A, B, C c C, then any pointed 

homotopy pushout hocolim,(B +- A -+ C) belongs to C. 

The smallest cellular class containing a space X is denoted by C(X), e.g., 

C(S 2) consists of the simply-connected CW-comptexes. A space X is said to 

bui ld  a space Y, if Y belongs to C(X). In this case we write X << Y. If X << Y 

and Y << X, then the two spaces are said to be cel lular ly equivalent ,  a relation 

that we denote by X ~ Y. A strict inequality X << Y is denoted by X 4< Y. 

The r a t iona l  cel lular  class of X is the cellular class C(X0) generated by the 

rationalization X0 of X. 

In [5], W. Chachdlski, P. E. Parent and D. Stanley show that the partially 

ordered set (poset) (Spaces, <<) is a complete lattice. The meet of two spaces is 

the wedge of the spaces. The join of two simply-connected finite CW-complexes 

X and Y is the wedge of all simply-connected countable CW-complexes that are 

built by X and Y. 

We denote by B the family of cellular classes of strictly simply-connected finite 

CW-complexes, and by B0 the corresponding family for strictly simply-connected 

c-finite rational spaces. Here a rational space is called c-finite (cohomologically 

finite) if ~ i>2  dim Hi(x;  Q) < ~ .  In [6], Chachdlski, Parent and Stanley prove 

the following Theorem that will be absolutely crucial throughout the paper. 

THEOREM ([6]): Let X and Y be strictly simply-connected rational spaces. Then 
X << Y if and only if there is a continuous map f :  Vi i i  X --~ Y such that H2(f) 
is surjective. 

The posers B and/3o contain infinitely many elements. For instance, 

8 8 8 8 
S 2 << p2(C) << p3(C) << . . .  << P~(C);  and 

8 S 8 8 

S ~ <<. . .  << P2(C)#P2(C)#P2(C) << P2(C)#P2(C) << P2(C). 

Clearly, the structure of these posets is highly nontrivial as shown by the 

following results. 

In [14] K. Hess has shown that  the poser B0 contains non-comparable elements 

that have the same rational cohomology algebra and the same rational homotopy 

Lie algebra. 

More recently an injection of the usual ordered set (N, _<) into the poset of (non- 

necessarily finite dimensional) rational spaces has been obtained by Chach61ski, 
Parent and Stanley ([7]). 

In this paper we consider the following important problem, namely, 
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Density problem: 

that 

Let X and Y be simply-connected finite CW-complexes such 

8 

s 2 << x << r << I t (Q,  2). 

Does there exist a simply-connected finite CW-complex Z not equivalent to X 

and Y such that X << Z << Y? 

Our first theorem gives an affirmative answer to the density problem for the 

poset B0. We also show that there are infinitely many non-comparable elements 

in this poser. 

THEOREM 1 (Rational density): Suppose that X ~< Y is a strict inequality in 

13o. Then there are infinitely many non-comparable strictly simply-connected 
8 8 

c-finite rational spaces Zn, n _> 1, such that X << Zn << Y. 

Finally, we construct injections of the usual poset (Q n [0, 1], _<) into B. 

THEOREM 2: There is a family of simply connected finite CW-complexes F that 

sat/sties the following property. I f  X E Y:, and if w is an element in 7r~.q(f~X) 
with 2q + 1 _> dim X, which is not in the radical R ( X )  of X ,  and such that a~ K) 1 

is nontrivial in 7r2q(f~X) (~ Q, then there exists a poset injection 

fx,~: (Q A [0, 1], <) --+ (B, <<), 

with fx,~(O) = X and fx,~(1) = (X U~ e2q+2). Here cO denotes the element of 

7r2q+ l ( X ) corresponding to a; by the natural adjunction. 

Since (Q, <_) injects into (QN]0,1[, _<), Theorem 2 gives different injections of 

(Q, _<) into the poset (B, <<). In order to describe the family ~-, we need to 

introduce some definitions. 

Definition 1: A space X is called ( r a t iona l ly )  i r r e d u c i b l e  if its rationalization 

Xo satisfies the following properties. 

(11) Xo is not equivalent to a wedge of rational spaces Vi~1 x i  with dim H2(Xi) 

< dimH2(Xo) for i E I; and 

(I2) a self-map f of Xo that induces an isomorphism on H2(Xo) is a homotopy 

self-equivalence. 

For example, a space whose rational cohomology algebra is generated by ele- 

ments of degree 2 satisfies/2. More generally, spaces X for which the rational 

Hurewicz map hq: 7rq(X) © Q --4 Hq(X; Q) is zero for q > 2 also satisfy h (cf. 

Proposition 3, below). When n is even, a connected sum of r copies of p n ( c ) ,  



320 Y. FELIX AND P.-E. PARENT Isr. J. Math. 

X = #rPn(C) ,  is irreducible. Suppose in fact that Xo is cellularly equivalent to 

a wedge Y -- Viei x i .  This implies the existence of maps g and h 

Vxo ~ vjY h:v¢~ Xo 
k 

such that H2(h) and H2(g) are injective. Suppose dimH2(Xi) < dimH2(Xo); 

then for i E I and j E J there is some aij E H2(Xo) such that H2(hjlx~)(c~ij) = 
0. Since n is even, H2n(Xo) is generated by ai~. This implies that H2n(h) = O. 
Take /3 E H2(Xo). We have H2n(h)(/3n) = 0. But this is impossible because, 

from the injectivity of H2(h o g), we have H2n(h o g)(/~n) = (H2(h o g)(]~))n ~ O. 

Similar arguments show that p3(C)#($3 × S 3) is another example of an 

irreducible space. 

Definition 2 ([10]): A simply-connected finite CW-complex X is called (rat io-  

nal ly)  hype rbo l i c  (respectively elliptic) if the graded vector space 7r. (X)® Q 

is infinite dimensional (resp. finite dimensional). 

The dichotomy between elliptic and hyperbolic spaces is very important in 

rational homotopy theory. If X is elliptic, then its rational cohomology alge- 

bra H* (X; Q) satisfies Poincar duality, the Euler-Poincar~ characteristic is non- 

negative, and 7rq(X)Q Q = 0 for q > 2.  d imX.  On the other hand, when 

X is hyperbolic, the graded Lie algebra 7r.(ftX) Q Q is not nilpotent, and the 
union R(X) of all solvable ideals in 7r.(flX) ® Q, called the radica l  of X, is 

a finite dimensional nilpotent Lie algebra ([9], ([10], Theorem 36.5)). More- 
over, dimReve,(X) _< cat (X) ([10], Theorem 36.5), where cat (X) denotes the 

Lusternik Schnirelmann category of the space X ([18]), where by convention the 
category of a contractible space is zero. In particular, if a~ ¢ R(X),  then the ideal 

generated by w is infinite dimensional. 

Definition 3: A Bousf ie ld  class C is a cellular class together with the require- 

ment that  whenever F -+ E --+ B is a fibration sequence in which F, B C C, 

then E C C. In [5], the authors show that  any Bousfield class generated by a 

space has a cellular generator. When two spaces generate the same Bousfield 

class, they are called Bousfield equivalent. For instance, a deep result of Hopkins 

and Smith ([16]) shows that if X is a simply-connected finite CW-complex, and 

7r2(X) = Z ® G, then X is Bousfield equivalent to S 2. 

We can now make Theorem 2 more precise. The family 5 r is the family of ir- 

reducible, hyperbolic, finite, simply-connected CW-complexes that are Bousfield 

equivalent to the sphere S 2. 
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Let us come back to the rational poset. In order to prove the rational density 

we first prove a unique decomposition theorem. 

Definition 4: A decomposition X ~ ( V / z / x i )  v Y is called a n  i r r e d u c i b l e  

d e c o m p o s i t i o n  r e l a t i v e  to  Y if the following properties are satisfied: 

(P1) each Xi is an irreducible space; and 

(/)2) if for some io E I we have a continuous map 

such that  H2( f ;Q)  is surjective, then for some k, the restriction 

fklX~o : Xio -+ Xio is a rational homotopy equivalence. 

When Y is contractible, the irreducible decomposition relative to Y is called a n  

i r r e d u c i b l e  d e c o m p o s i t i o n  of X. An irreducible space X is an irreducible 

decomposition of X (cf. Proposition 1 below). 

THEOREM 3: Let X and Y be strictly simply-connected c-finite rational spaces; 

then X V Y admits an irreducible decomposition relative to Y .  

THEOREM 4 (Unique decomposition theorem): A strictly simply-connected c- 

finite rational space admits a unique (up to permutation of the factors) irreducible 

decomposition. 

In other words, if Vie1 x i  and Vjcj ~) are irreducible decompositions, then 

there is a bijection f :  I --+ J such that  Xi ~ }~(i). 

On one hand, the poser /~o is rather simple (unique decomposition theorem), 

on the other, it seems very complicated. In particular, we construct (Theorem 5) 

an injection 0 of the poser of finitely generated ideals in a free graded Lie algebra 

on two generators into Bo satisfying 0(I) << O(J) if and only if I C J .  

The paper is organized as follows. In section 3 we develop properties of irre- 

ducible spaces and irreducible decompositions. Section 4 contains tools for the 

construction of strict inequalities. Sections 5 and 6 are devoted to the proof of 

Theorem 1, and Section 7 to the proof of Theorem 2. 
8 

The proof of Theorem 1 is based on the following argument. Suppose X << Y; 
8 

then X ~ X V Y << Y. We then take an irreducible decomposition of X V Y 

relative to Y. This gives 

X ~ X~ V Y << X~ V Y << .- .  << Xn V Y << I :  
i =  I i ~ 2  
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By assumption, one inequality has to be strict, thus there is a sequence 

8 

X << Z v T  << T << }', 

with Z V T irreducible relative to T. 

Now the proof splits into two cases depending on whether Z is hyperbolic or 

elliptic. In the elliptic case, let n be the least integer m such that  7C>2m(Z)(~Q = 

o. We choose an element c~ E ~2~- l (Z)  such that  a © 1 ¢ 0 in n2n- l (Z)  Q Q. 

Let N be an integer greater than the cohomological dimension of Z V T, and let 

M be an integer greater than 2. d i m H ~ ( Z  V T; Q). Depending on the value of 

n, we consider the following space Rz: 

2M 

whonn=2 Rz uo+ e2 ) 
- -  0 ~ 

M 

i = l  

and 

2 M  

whenn>2' Rz-- ((?lSnVzOOa+we2nl / 0  

M 
s n  n 

W : '~"~[ 2 i - 1 '  $2i],  
i=1 

where the p N  (C) are copies of the complex projective space pN (C), and fl~ is a 

generator of ~2 (pN (C)). 

We show that  Rz V T is irreducible relative to T, that  Rz is hyperbolic, and 

that  
8 

Z V T  ~< Rz  V T  <<T. 

Finally, we prove that  if S V T is irreducible relative to T and S is hyperbolic, 

then there is a sequeuce of non-comparable spaces Zm such that  

S V T  Zm 

Throughout this paper, if a is an element of nq(~tX), then & denotes the 

corresponding element in 7~q+l(X) through the natural isomorphism 7rq(~X) ~- 
~+l(X). 

ACKNOWLEDGEMENT:  The authors would like to thank Barry Jessup and the 

referee for very helpful comments aud suggestions. 
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2.1. OVERVIEW OF RATIONAL HOMOTOPY THEORY. In this text we mainly 

use tools from rational homotopy theory, and refer the reader to [21], [10] and 

[22] for the necessary background. Each simply-connected space with finite Betti 

nmnbers admits a Sullivan minimal model Adx = (AV, d) and a Quillen minimal 

model £ x  = (L(W), d) that  have the following properties: 

Homq(Vn,Q)  ~ 7r,(X) ~) Q - H,~_I(L(W),d), and 

Hn(AI/, d) ~ Hn(X; Q) ~ HomQ(Wr~_l, Q). 

Each continuous map f :  X --+ Y admits a Sullivan minimal nlodel 34$: 3 4 y  --+ 

3 d x  and a Quillen minimal model £/: £ x  -~ £Y.  Moreover, each morphism of 

differential graded algebras ~: 34y  -+ 3 4 x  or differential graded Lie algebras 

f': £ x  -+ £ r  can be realized by a continuous map f :  X0 -+ ]o. Denote by [ - ,  - ]  

the set of homotopy classes. There are bijeetions 

[x0, ~;] =~ [Mr, 34x] ~ [£x, z;~.]. 

The dichotomy between elliptic and hyperbolic spaces, as noted in tile intro- 

duction, is very useful. For instance, in the elliptic case, the greatest integer m 

such that  7rm(X) • 0 is always odd ([11]); and the rational homotopy Lie algebra 

of an hyperbolic space has exponential growth. 

A simply-connected c-finite rational space Y is always the rationalization of a 

simply-connected finite CW-complex X,  (Y = X0). From the cell decomposition 

of X we deduce a rational cell decomposition of X0. In fact, if X = Z Ua e" then 

X0 is the homotopy cofiber of the map s0: S~ ~-t --+ Zo, and we say that  Y is 

obtained from Zo by adjunction of a rational cell of dimension n. The (rational) 

skeleton of dimension p of Y, denoted YP, is the subspace of Y formed by the 

rational cells of dimension _< p. This procedure shows how to construct, in a very 

simple way, the rationalization of a space X fi'om a cellular decomposition of X. 

By a result of Baues ([1]), we can always choose a cell decomposition in which 

the suspensions of the attaching maps of the cells are trivial. 

2.2. POSETS AND LATTICES. A l a t t i c e  (L,V,N) is a nonempty set closed 

under two binary operations v (join) and N (meet) such that  the following laws 

are satisfied for all a, b, c E L: 

• associative laws: a V (b V c) = (a V b) V c, a n (b N c) = ( a n  b) N c; 

• commutat ive laws: a V b = b V a, a N b = b N a; and 

• absorption laws: a V (a c~ b) = a, a c~ (a v b) = a. 
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An order relation < can be defined on a lattice such that a _< b means that 

a V b = b .  

A lattice can be seen as a poset (E, <) such that any set of two elements 

possesses both a least upper bound and a greatest lower bound. 

3. I r r educ ib le  spaces 

3.1. IRREDUCIBILITY PROPERTIES AND CRITERIA. We call a map f:  X ~ Y 

Hn-surjective or injective if the map Ha( f )  is respectively surjective or injective. 

LEMMA 1: Let f = V fi: Vie1 Xi ~ Y be an H2-surjective map between simply- 

connected c-finite rational spaces. Then each fi factors as Xi ~ 3:~ 24 Y such 

that the h i a r e  H2-surjective, the gi are H2-injective, the map Vi gi: Vie* Yi -+ Y 
is H2-surjective and the spaces Yi are simply-connected c-finite rational spaces. 

Proof: Denote by ~2i: (AZ, d) --+ (AV/, d) a Sullivan minimal model of fi,  and 

denote by (Ii, d) its image. Clearly (Ii, d) is a commutative differential graded 

algebra, and ~i factors through it, i.e., 

Pi = 0~ o ¢i: (AZ, d) -~4 (Ii, d) -~ (AV/, d). 

We denote by Yi the (Sullivan) geometric realization of the algebra (Ii, d) 
([10], [21]). The algebra maps ¢i and 0i can be realized by maps gi: Y~ --+ Y and 

hi: Xi --+ Yi. Denote by ni the cohomological dimension of X~. Since H*(Ii,  d) 
can be infinite dimensional, in order to satisfy all the requirements of the lemma, 

we replace Y/by its rational skeleton of dimension ni. II 

PROPOSITION 1.: An irreducible space X is an irreducible decomposition of X .  

Proof: Suppose f = Vie l  f i :  Vicl X --~ X is an H2-surjective map. By Lemma 

1, each fi factorizes as X - ~  Yi g'> X such that the hi are H2-surjective, the 

gi are H2-injective, the map Vi gi: Vier Y/-+ X is H:-surjective and the spaces 

~ are simply-connected c-finite rational spaces. Then X is cellularly equivalent 

to Vi Y/. By irreducibility property 11, for some i, H2(hi) is an isomorphism and 

therefore H2(fi)  is also an isomorphism. By irreducibility condition I2, fi is an 

homotopy self-equivalence. This completes the proof of Proposition 1. II 

The irreducibility condition simplifies the verification of cellular equivalences 

as shown by the following proposition. 
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PROPOSITION 2: Let X ,  Y and T be strictly simply-connected c-finite rational 

spaces. I f  X V T is an irreducible decomposition relative to T, and X V T ~ Y V T, 

then there is an H2-surjective map k: Y ~ X .  

Proof:  

maps  

Since X V T and Y V T are cellularly equivalent,  there are H2-surject ive 

g=Vgj: V(YVT)--).X and f=Vfi: V(XVT)--~}: 
jCJ iCI 

This gives an H2-surjective m a p  

By L e m m a  1, each m a p  gJb" o fi factors as 

 i,j x ,  

such tha t  each hi.j is H2-surjective, each gi,j is H2-injeetive, and (Vi,j gi,j) v 

(Vj  gj IT) is H2-surjective. Therefore X V T is cellularly equivalent to (Vi,j l ,~,j)v 

T. 

Since the space X V T is an irreducible decomposi t ion relative to T, there is at  

least one pair  (i0, j0) such tha t  He (gjo o fio Ix ) is an isomorphism.  Thus  He (gjo b" ) 
is a surjective map.  The  result follows as we set k = 9jo [Y" | 

The  next  two proposi t ions are useful to detect  irreducible spaces. 

PROPOSITION 3: Let X be a strictly simply-connected e-finite rational space. I f  

the n-skeleton Y of X satisfies the irreducibility property I1, then X also satisfies 

[1. 

Proof: If  X is cethflarly equivalent to a wedge Vie  I x i ,  then Y is cellularly equiv- 

alent to the wedge V-~el }'~, where }} is the rat ional  n-skeleton of Xi. Therefore  

d i m H 2 ( X i )  = d imH2(} ) )  _> d i m H 2 ( X )  for at  least one i. | 

PROPOSITION 4: Let Y be a strictly simply-connected c-finite rational space. I f  

the m-skeleton of Y satisfies irreducibility condition I2, and the Hurewicz map 

hq: 7rq(Y) --+ Hq(Y) is zero for q > m, then Y also satisfies Is. 

Proof: I t  is enough to consider the case where Y is obta ined  from a space X of 

dimension m satisfying I2 by adjunct ion of n ra t ional  cells of dimension r > m, 
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i.e,~ 

is a cofibration sequence. Denote by K = the image of rr,._l (~). 
Suppose f is a self-map of Y inducing an isomorphism on H2. The map f 

restricts to a homotopy self-equivalence f x  of X. The commutative diagram 

~ , . _ , ( x )  > , ~ _ , ( Y )  = ~ r _ , ( x ) / I c  

,L.,.-,(:x) I~.-,(:) 
7rr_l(X ) > 7rr_l(Y ) = 7r,._t(X)/IC 

shows that  ~r~-l(fx) maps K isomorphically onto itself. By the hypothesis on 

the Hurewicz map, 7r,._ 1 (~2) is injective. This implies the existence of a rational 

homotopy equivalence ¢ making the diagram 

n s r - l \  

(V~_-, r-1 " <  )o 

> X  > Y  

fx  

> X  > Y  

commutative.  

When r = 3, X is a wedge of rational sphere S~, and since h3(Y) = 0, Y is 

also a wedge of rational sphere S~, and the result follows in that  case. 

We now suppose r > 3. If H,._l(~o) ¢ 0, then X TM Z V S r - l ,  and X does not 

satisfy property /2. Therefore Hr_l(~9) = 0. The naturality of the long exact 
n r -  1 y homology sequence of the cofibration sequence (Vi=l Si )o -~ x -~ implies 

the commutat ivi ty  of the diagram 

Hr(Y) - > Hr_I (VSr-1 ;Q)  

]re(r) 1~, 
Hr(Y) -~> Hr_,(VS;'-"Q)., 

This shows that  H,.(f) is an isomorphism, and therefore that  f is a homotopy 

self-equivalence. | 

An important  property of irreducible spaces is the following, very useful 

proposition. 
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PROPOSITION 5: Let X and Y be strictly shnply-connected c-finite irreducible 

rational spaces. Then X is cellularly equivalent to It" if  and only i f  X and Y have 

the same homotopy type. 

Proof:  If  X ~ It', by Proposi t ion 2, there are H2-surjective maps f :  X --+ Y and 

g: Y --+ X.  In part icular  H2(g o f )  and H2(f  o g) are isomorphisms and by the 

irreducibility proper ty  I~, f and g are homotopy  inverse self-equivalences. | 

3.2. C O N S T R U C T I O N  OF IRREDUCIBLE DECOMPOSITIONS.  

PROPOSITION 6: Let X be a strictly simply-connected c-finite rational space. 

Then X is cellularly equivalent to a simply-connected c-finite rational space Y 

satis(ving property h ,  and such that dinl H2(Y) = dim H2(X) .  

Proof:. Let f :  X --+ X be a continuous nlap tha t  induces an isomorphism o n / / 2 .  

We denote by r the least integer n such tha t  fl=,,~x) is not injective, and by a an 

element in 7r,.(X) such tha t  zr,.(f)(a) = 0. Then f factors as f = f '  o i, where 

x 2+ (x t0 5 x 4 (x Cr+')0. 

We observe tha t  the space (X Ua e "+1 )0 is cellularly equivalent to X and tha t  

dim 7r,. (X Ua e ''+1 )0 < dim zr,.(X). 

Let N be tile collomological dimension of X.  We denote by C the set of 

homotopy  classes of strictly simply-connected c-finite rational spaces Y cellularly 

equivalent to X tha t  have cohomological dimension less than  or equal to N and 

satisfy dim H 2 ( } ' )  = dim H2 (X).  For }" ¢ C, let 71.i (Y) = dinl 7ri (Y). We give tile 

set of  sequences 

(113(] ' ) ,  I t 4 ( } ' )  . . . . .  " t iN-  1 (1") )  

the lexicographic order, and we choose a space Y corresponding to a mininlal 

sequence. 

If  the Hurewicz map hN: ZrN(Y) ~ HN(Y)  is nonzero, then Y is homotopy  

equivalent to }'~ V So N and we replace 1" by Y' .  We can therefore suppose that. 

hN = O. 

Let f :  Y --+ Y be a continuous map inducing an isomorphism on /-/2. If, for 

some r < N,  rr,.(f) is not  an isomorphism then It" is cellularly equivalent to some 

space Y '  corresponding to a smaller sequence r~i(Y'). Therefore f induces an 

isomorphism on Zr<N. 
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Let (AZ, d) be the Sullivan minimal model of Y, and ~: (AZ, d) -+ (AZ, d) a 

minimal model for f .  By hypothesis qo induces an isomorphism on (AZ) <N ¢~ 

(A>2Z) g.  The map ~o induces therefore an isomorphism in cohomology and so 

f is a homotopy self-equivalence. This shows that Y satisfies I> | 

We now proceed to the proof of the decomposition theorems. We first note 

that if X is cellularly equivalent to Vie1 Xi then there is an H2-surjective map 

V k ( V i c / x i )  --+ x .  This directly implies that there is a subset J C I such that 

X "J V j E J  "¥J with [J[ <_ dimH2(X).  

THEOREM 3: Let X and Y be strictly simply-connected c-finite rationa} spaces. 

Then X V Y admits an irreducible decomposition relative to Y. 

Proof: If the space X satisfies the irreducibility property I1, then by Proposition 

6, we have a cellular equivalence X ~,, Z with Z irreducible. If the space X does 

not satisfy I1, then X ,-~ V i c / x i ,  where by hypothesis, for each i, dimH2(Xi)  < 

dim H2(X). We can also assume that the cardinality of I is less than or equal to 

the dimension of H2(X), and that none of the Xi is built by the other ones. By 

iterating the decomposition process we can suppose that the Xi satisfy property 

I1, and by Proposition 4, proper ty /2 .  

We now consider all the decompositions X V Y ~ Vie1 x i  v Y such that 

1. each Xi is irreducible; 

2. card I < dimH2(X);  

3. dimH2(Xi) < dimH2(X)  for each i E I; and 

4. no Xi is built by the space Y and the other Xj. 

To such a decomposition we associate a sequence 

(ml, m2,..., mq) 

where q = dim H2(X), and mj is the number of components Xi with dim H2(Xi) 

= j .  

Since card I _< d imH2(X) ,  ~ m i  <_ q. We give the set of such sequences the 

lexicographic order, and we choose a decomposition corresponding to a maximal 

sequence, i.e., 

X V Y , - ~ V X ~ V Y .  
iE l  

The chosen decomposition is irreducible: Suppose that for some i0 E I, we have 

an H2-surjective map 

k k E K  \ iEI  
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Each f a l x  ~ decomposes into gk,i o hk,i where gk,i: Tk,i -4 Xio is an H2-injective 

map and hk,i: Xi -4 Tkd is an H2-surjective map. Each fkly decomposes into 

lk o mk where lk: Zk --+ Xio is an H2-injective map and ink: Y -4 Zk is an 

H2-surjective map. Moreover, (Vk,i gk,i) v (Vk Ik) is an H2-surjective map. 

Suppose that there does not exist an integer k such that fklX,o is H2-surjective. 

Since Xio is not built by Y and the other Xj, no gk,i and n o  lk  is H2-surjeetive. 

This means that  dim H2 (Tk,i) < dim//2 (Xio) for each pair (k, i), and dim//2 (Zk) 

< dim H2(Xi o). We deduce a cellular equivalence 

,vY  (yo,,,) v v ( v , O  v,: 

We decompose the Tk,io and the Zk into irreducible elements and we suppress 

the components that are built by the other factors. This new decomposition 

corresponds to a sequence that is strictly larger than the previous one, which is 
impossible. | 

THEOREM 4 (Unique decomposition theorem): A strictly simply-connected c- 
finite rational space admits a unique (up to permutation of the factors) irreducible 
decomposition. 

Proof." Suppose that X adnfits two irreducible decompositions 

.,_~ ~ V~,~ ~ V ~ -  
iEI  j E J  

The cellular equivalence implies the existence, for each i, of H2-surjective maps 

f and g, 

v v (v 
IcL  i c l  k C K  j C J  / 

By the irreducibility of the decomposition VieI Yi of x ,  there exists l0 such that  

the composite f o gto,i: }~ -4 Yi is H2-surjective. Therefore, the map 

Vu,, , j  oq,~,~ Og,o,.~): V V ~'~ ~ }~ 
k , j  k E N  j E J  

is also H2-surjective. Here qkd denotes the projection map 
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By irreducibility, this implies that  for some (ko,jo) the map fko,jo o qkodo o glo,i 

is H2-surjective. Therefore fkoJo is H2-surjective. Let r(i) = jo. We have the 

inequalities 

and therefore 

Z~(i) << }'.~ and 

V z..) << V r~<< V z,, 
i E l  i E I  j E J  

V z.(,)~ V z,. 
i E I  j E J  

Since Z,( 0 could be equal to Zr(j) for i ~ j ,  the cardinality of J is less than or 

equal to the cardinality of I.  

A similar argument shows that  for each j E J there is an element s(j)  E I such 

that  Ys(j) << Zj .  This shows that  [I] = [J[. In particular, the components Z~( 0 

are all different, as are all the components 1%(j). Since no Zj is built by other 

Zk and no 2Q is built by other Xt, the applications r: I -+ J and s: J -+ I are 

inverse bijections, and 

}i ,-  Z~( 0. 

This proves the theorem. | 

The determination of the irreducible factors Xi in an irreducible decomposition 

X ~ VicI  x i  reduces in fact to the search of the retracts of X. 

PROPOSITION 7: I f  X ~ V i e l  ~Yi is all irreducible decomposition of a strictly 
simply-connected c-finite rational space, then each Xi is a homotopy retract of 

X .  

Since X ,~ ViEI Xi, there are H2-surjective maps 

g = V g,: V ( V  x , )  -~ x. 
l i E l  

Proof: 

::V:~: Vx-~ Vx, and 
k k iE[  

Therefore, for i0 E I ,  the composition map 

V(i o.). VV (V-Y,) V .",o 
k k l i E I  " i E I  

is H:-surjective. By property P2, there are k and I such that  fkogl IX~o : Xio --~ Xio 

is a homotopy equivalence. This shows that  Xio is a homotopy retract of X. | 
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COROLLARY 1: Let X be a strictly simply-connected c-finite rational space such 

that each self-map of X is either the trivial map or a homotopy self-equivalence, 

then X is irreducible. 

3.3. T H E  POSET OF GRADED IDEALS IN A FREE LIE ALGEBRA. The purpose 

of this section is to prove the following theorem. 

THEOREM 5: Let L be the free graded Lie algebra on two generators of the same 

positive even degree, and f-. be the poset of finitely generated graded ideals in L. 

Then there is an injection 0: (£, C) --+ (B0, <<) satisfying O(I) << O(J) if and only 

i f I  C Y. 

Proo~ Let X be the rationalization of the space 

[p4(c) I#P4(C)2#p4(c)3] Up2(ch vs~ (P2(C) 1 x S~), 

i.e., the rationalization of the pushout of the diagram 

pc(c)1 V S~ ~ > P2(C)1 x S~ 

p4(C) l#P4(C)2 # p 4  (C)3 

where i and j denote canonical injections. Since H* (i; Q) is surjective, the Mayer 

Vietoris exact sequence of the pushout yields the isomorphism of algebras 

H*(X;Q) = Ker H*(i) - H*(j): 

H*(p2(c)I  x $22) @ H*(p4(c ) I~p4(c )2~p4(c )3 )  -+ H*(p2(c)I  V $22) 

_ -  A ( x , ,  _ x4 , _ 

LEMMA 2: Tile space X is rationally formal. 

Proof: Recall that a space X is rationally formal if its minimal model is quasi- 

isomorphic to the differential graded algebra (H*(X; Q), 0) ([21], [10], page 156), 

or equivalently if X admits a Quillen minimal model, (L(W), d) with a purely 

quadratic differential, d(W) C L2(W) ([22]). Since Wq = Hq+I(X;Q) ([10], 

formula 24.3), if i: S -+ T is the injection of a subcomplex and if H,( i ;Q) is 

injective, then the Quillen minimal model of i, ~i: (L(Ws), d) -+ (L(WT), d) is 

injective. Therefore, if Y is the union of the formal subcomplexes 1'~, and if each 

inclusion Y~ --4 Y induces an injective map in rational homology, then Y is also 

formal. This applies directly to the space X. | 
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Denote by a: S 6 -+ ~2P3(C) the usual Hopf map, and by a l  E 7r6(~tP3(C)l) 

and a2 E ~r6(~p3(c)2) the corresponding elements in P3(C)1 and P3(C)2. Then 

LEMMA 3: The elements ~1 and a2 generate a free Lie subalgebra in 7r,(f~X)GQ. 

Proof: Since X is formal, its minimal model, (AZ, d), is the minimal model of 

(H* (X; Q), 0), 
~: (AZ, d) -~ (H*(X;Q),0) .  

By ([13]), this minimal model admits a second gradation, Z = (~p>O Zp, such 

that d(Zp) C (AZ)p-1, 

zo  = z ~  = (x~, x2, x3), 

Z1 =(yl ,Y2,Y3,  Zl,Z2,Z3), 

dZl = x ~ - x 4 , 3  

[Yl] : [Y2[ = 3 ,  

~ ( X l )  = Xl ,  ~ ( Z 2 )  = X2, ~(X3)  = X3, 

dyl = XlX3, dy2 = x2x3, dy3 : XlX22, 

ly3l = 5, Iz~l-- 1~21 = Iz3l = 7, 

~ ( z > l )  = 0. 

The model of the injection k: p3(C)I -+ X is given by 

K: (AZ, d)--+ (A(a l ,a2) ,d ) ,  lal] = 2, In21 = 7, da2 = a 4, 

/ k ' ( Z l )  = al,  K ( z l )  -- a2, 

K ( x 2 )  = K ( x 3 )  = h-(~2)  = i c (~3)  = K(y~)  = K ( Z > l )  = 0. 

Let & 6 7rT(p3(c)) and &l and &2 6 7rT(X) be the elements corresponding by 

adjunction to a, ch and a2. 
Recall that the minimal model (AR, d) of a simply-connected finite-type CW- 

complex S is equipped with a natural isomorphism R n ~- Hom(Trn (S), Q). Here 
a2: 7rT(p3(c)) -+  Q satisfies (a2; 5) = 1. By naturality, we have 

(Z1; (~1) = (Zl;  71"7(k)((~)) - -  (Ik'(z1),(~> = (a2; ~)  = 1. 

Similarly, @2, &2} = 1. 
By ([10], 15.c), the minimal model of the 2-connected cover of X, X[2], is the 

quotient differential graded algebra 

(AZ/(x,, x~, x3), d). 

The quotient map 

¢: (AZ  Q A ( r , s , t ) , D ) - +  (AZ  © A ( r , s , t ) / ( x l , x 2 , x 3 ,  r , s , t ) , D ) ,  

Ir l=lsl=lt  I = 1 ,  d r = x 1 ,  d s =  x2, dt = x3, 
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is a quasi-isomorphism of differential graded algebras. On the other hand, the 

quasi-isomorphism ~o: (AZ, d) ~ (H*(X; Q), 0) extends to the quasi-isomorphism 

~9 © 1: (AZ @ A(r, s, t), D) --+ (H*(X; Q) O A(r, s, t), D). 

Denote by 0 a homotopy inverse of ~,. For degree reasons, we have 

O(Z1) = g I  - -  r'2g. 3 "-~ t x  3,  0(22) = 2, 2 -- 8 X  3-Jr- t2? 3.  

((~o O 1) o 0)(Zl) = -rxal + tx ], ((~2 C) 1) o O)(z2) = - s x  a + tx  ]. 

This shows that ((~2 @ I) o 0)(Zl) • ((~ O 1) o O)(z2) = 0, and implies the existence 

of the morphism p in the following diagram, p(u) = ((p @ 1) o O)(q) ,  p(v) = 

o 1) o 

(AT, d) 

(A(u, v)/(uv), O) 

> ( A Z / ( X l ,  x2,  x3) , d) 

~1(9~®1) oO 

- (H*(X;Q) O A ( r , s , t ) , D ) .  

Here e is the nfinimal model of (A(u, v ) / (uv ) ,  0), (AT, d) = (A(a, b, c , . . . ) ,  d), with 

e(a) = u, e(b) = v and d(c) = ab. The differential graded algebra (AT, d) is the 

minimal model of S r V S 7. The morphism fi follows from the Lifting Lemma ([10] 

Proposition 12.9): (~2 @ 1) o 0 o/5 ~ p o e. The construction of/5 can be realized 

by induction on the degrees of the generators. We can therefore suppose that 

/ )(a)  = Z i and fh(b) = z2. 

The geometric realization functor ([21], [10], Section 17) transforms/5 into a 

contimlous map fi: Z[2]0 -+ (S r V Sr)o . Denote by &l and &2 generators of 

rrr(SrV S r) ~.~ Q such that {a,&l) = 1 and (b,c)2) = 1. Then, (a, rrr(fi)(&l)) = 

(¢5(a),&l) = 1. Therefore, rrr(fi)(&l) = c721. In the same way, rer(15)(&2) = ga2. 

Recall finally that re.(f~(S r V S t ) )  (D Q is a free Lie algebra on the generators 

c01 and 002 corresponding by adjunction to &l and ga2. Since re. ( f~)  G Q is a 

morphism of graded Lie algebras, the elements c~l and ct2 generate a free Lie 

subalgebra in re.(~2X) (..3 Q. 1 

Let ~: X --+ X be a self-map. Denote by ~5 the induced autonmrphism of the 

minimal model (AZ, d) of X. With the notations of the proof of Lemma 3, a 

computation shows that,  for some a E Q, we have 

~ ( X l )  = a x l ,  ~(X2) = J:ax2 and ~5(x3) = :J::ax3. 

We then deduce that re . (~Z)(al)  = a4al and rr . (~o)(a2)  = a4a> Therefore, 

the graded ideals of the free Lie algebra F on ~1 and ~2 are preserved by the 
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homotopy self-equivalences of X. We denote by L the sub-Lie algebra generated 

by [as, [as, oL2]] and [a2, [oL1, o~2]]. 

Let I be a finitely generated graded ideal in L. Choose a minimal system of 

generators Wl . . . .  , Wn of I such that each wi is a graded homogeneous element of 

I. We define the space 

X I = X U~I e Iwll+2 U "'" i.Jo3, e Iwnl+2. 

Since each self-map of X is either the trivial map or a homotopy self-equivalence, 

by Corollary 1, X is irreducible and thus XI  is also irreducible. 

Let £ be the poser of finitely generated ideals in L; then the correspondance 

I -+  XI  

induces a morphism of posets 

0: (c, c) <<). 

By Proposition 5, this map 0 is injective. I I  

4. Constructions of  strict inequalities in/3 and/30 

In this section we introduce tools to construct strict cellular inequalities. 

PROPOSITION 8: Let X V T be an irreducible decomposition relative to T with 

X a simply-connected irreducible m-dimensional finite CW-complex Bousfield 

equivalent to the sphere S 2. Let a E 7rq(X) such that q > m and a G 1 ~: 0 in 

~rq(X) G Q. Then we have strict inequalities 

8 8 8 8 

X V T < < ( X u a e q + I ) v T < < T  and X o V T o < < ( X u a e q + I ) o V T o < < T o  . 

Proof  Since X is Bousfield equivalent to S 2, EX  builds S 3, and therefore 

X builds any space of the form X U~ e n with n _> 4. The cellular injection 

X ¢--+ Y = X U e e  q+l shows that X << Y. Suppose the spaces X V T  and 

Y V T are cellularly equivalent. The decomposition of X V T being irreducible, 

by Proposition 2, there is an H2-surjective map g: Yo -+ X0. Since X is the m- 

skeleton of Y, and the space X is irreducible, g restricts to an H2-surjective map 

gx: Xo -+ Xo. Moreover, X being irreducible, gx is an homotopy equivalence. 

Denote by i0:X0 --+ 1~ the canonical injection. Then the commutativity of the 

diagram 

Xo gx ) Xo 

Yo 9 - X o  
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implies the injectivity of 7rq(iO), which is impossible because a (9 1 # 0. | 

PROPOSITION 9: Let X be a strictly simply-connected irreducible m-dimensionM 

finite CW-complex. Let a 6 rrq(X) and/9 6 zrr(X) such that 
1. [a] = 0 in 7rq(X 0/3 e r + l ) ;  

2. c~ Q 1 and/3 G 1 are nonzero in 7r,(X) Q Q; and 

3. m < r < q .  

Then, we have strict inequalities 

Y ~- Xl.Jc~eqq-1 ~< Z --- X[.J[3e r+l and ~o = (Xl-Jaeq+l)o ~< Z0 = (Xl--JB(?r+l)0. 

Proof: The class [a] being trivial in 7rq(X (Am er+l),  we have a homotopy equiv- 

alence 
Y 0/3 e r+ l  ~'~ Z V S q+l. 

Therefore Y builds Z. Moreover, the inequality is strict, and even strict ratio- 

nally. Indeed, suppose that  Z0 << Y0. Since X is irreducible, the same is true for 

Y and Z. Thus there exists an H2-surjective map f :  Z0 -+ Y0. Since X is the 

m-skeleton of Y and Z, and X is irreducible, the restriction f x  of f to Xo is a 

homotopy self-equivalence. 

Consider the following commutative diagram in which the vertical maps are 

injections of skeleta: 
fx  

Xo " Xo 

Zo ,Yo .  

The homomorphism 7rs(j) being injective for s _< q - 1, the map Try(i) is also 

injective for s _< q - 1, but this is impossible since r < q and 7r,.(i)(fl) = O. | 

5. T h e  s p a c e  R z  for  a n  i r r e d u c i b l e  d e c o m p o s i t i o n  Z V T w i t h  Z el l ip t ic  

In this section all spaces will be strictly simply-connected c-finite rational spaces. 

Our starting point is an irreducible decomposition Z V T, relative to T, with Z 

elliptic. Our goal is to construct another irreducible decomposition relative to T, 

R z  V T with R z  hyperbolic, and 

8 S 
ZvT << Rz VT <<T. 

We fix first some notation: Let n be the least integer m such that ~>_2m(Z) -- O, 

a a non-trivial element in 7r2n_l(Z) ,  N the cohomological dimension of Z V T, 
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and M an integer greater than 2.  dim HT~(Z V T). Recall from the introduction 

the construction of Rz: 

2M M 

o' ~ = A i - 1 , / M  
- -  i = l  

and 

2M M 

w h e n n > 2 ,  Rz: ([Zx (Vsnl] Ue+we2n ) Z[ 
i = l  " '~  O' V3 --~ /~2i-1, /~2i] ,  

i----1 

where the spaces p N ( c )  are different copies of the projective space p N ( c ) ,  the 

spaces S~ are different copies of the sphere S ~, and the /~i are generators of 
7r2(pN(c)) or 7r~(Sn). 

Throughout section 3, let Xi be either (pN (C))0 or (S n)0 according to whether 

n = 2 or n > 2. Moreover, in what follows all rational spaces are supposed to 

be equipped with a rational cell decomposition such that  the suspensions of the 

attaching maps are trivial. We denote by T ~ the n-th skeleton of the space T. 

In the same way all continuous maps f :  T -+ V are supposed to be celhflar, i.e., 

for any n, f ( T  n) C V n. The properties of Rz are contained in Propositions 10 

to 13. 

LEMMA 4: The image of a by the Hurewicz map h2n-l:  71"2n-l(Z) -'+ H2n-I(Z) 
i s  Z e r O .  

Proof'. Let (A v, d) be the Sullivan minimal model of the space Z. Since V r = 

Hom(Trr(Z),Q), V >2n-1 = 0. The Hurewiez map h2n-1 is dual to the map 

induced in homology by the projection of complexes 

(A + 

I f  h2n-1 # O, then h2,,-1 ¢ 0 and (A v, d) contains a cocycle a of the form a = 

~ > 1  zi, with z~ E A ~ V and zl ¢ 0. Denote by V ~ a graded complement of QZl 

in V. For degree reasons, d(V ~) C A ->2 v ' .  We have therefore an isomorphism of 

differential graded algebras 

(A v, (A v,,d) o (A.,0). 
This implies that  Z -~ Z ~ x S 2n-1, which is not an irreducible space. | 

Lemma 4 implies that  the homology class [e2n],  generated by the cell e 2n in 

the homology of the cellular chain complex of Rz, is non-zero. 
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LEMMA 5: We have inequal i t i es  

Z v T  << R z  V T  <<T. 

Proob The only nontrivial case is the case n = 2. Since N is the cohomological 

dimension of Z V T, there exist H2-surjective maps Z --+ pN(C) ,  and this shows 

that  Z << R z .  II 

PROPOSITION 10: Z V T ~< R z  V T. 

Proof." Suppose there exists an H2-surjective map 

= V ~ :  V (R~ v :r) -~ z .  
k kE/x" 

When n = 2, the restrictions ~lp~(c): PN(C) -+ Z induce the zero map on H:  

by the choice of the integer N. Therefore, for all values of n, the map ~2 induces 

an H2-surjective map 

~'= V(~l~v~): V(zvT) -~ z.  
k k 

By the irreducibility hypothesis on Z V T, there is an index ko for which the 

restriction ~ko Iz: Z --+ Z is an H2-isomorphism. Since Z is irreducible, Pko]z is 

a homotopy equivalence. We denote by 5' a homotopy inverse. We can therefore 

suppose that  ,~, o ~ko : R z  --+ Z restricts to the identity on Z. 
( \ l  2M ~.'~ We denote by 0 the restriction of 5' o ~ko to Z × ~vi=l - CJ. The map 

2M 

extends to R z  and is the identity on Z. Therefore, 

0 = ~ . ( 0 ) ( ~  + ~ )  = ~ + ~ , ( 0 ) ( ~ ) .  

Let aut lZ ,  as usual, be the (strictly associative) monoid formed by the homo- 

topy self-equivalences of Z, and ev: a u t l Z  -+ Z the evaluation map at the base 

point. The map 0 induces a map 0 making the following diagram 

S2n-1 s2n-1  

2M 
(Vi=l Xi)o , a u t l Z  , Z 



338 Y. FELIX AND P.-E. PARENT Isr. J. Math. 

commutative up to homotopy. 

By the universal property of the James functor J (see, e.g., [23], Theorem VII, 
2M 2.5), 0 factors through J(Vi=l Xi), i.e., 

V Xi -~ J Xi ) autlZ. 
i=1 i=1 

Recall that J(S) ~ liES, and that  the Hurewicz map haE: ~. (ftE) -+ H. (~2E) is 

always injeetive for finite rational spaces ([10], Theorem 16.10). We then consider 

the following commutative diagram: 

2 M  hvixi > H [~ 1 2 M  

7r2n_ l (Vi= l  X i )  2n--1 ~,Vi_-I Xi; Q) 

17r2n--1 ( i ) IH2n-1 ( i ) 

/r2n_ 1 (j(V2__f hy(v,x>d 2M Xi)) H2n-l(J(Vi=l Xi); Q) 

i (o') 7r2n--1 

7r2n-l(autlZ) 

l ~ 2 n - , ( e v )  

~r~n-l(Z). 

Since 7r2n_l(eV o 0 / o / ) ( [ c o  D ~- --[dr] • 0, we have  ~r2n-~(i)([w]) 7 ~ 0, a n d  t hus  

hj(vx,) oTr2,_l(i)([w]) ¢ 0. Therefore hv~x~([w]) ¢ 0, which is impossible. | 

Let p: Rz -+ R ~ 2M = ((Vi=l Xi) u~ e2~)0 be the canonical projection obtained 
by mapping the subspaee Z to the base point. 

The cohomology of R t is given by 

H*(R/) = ~ [ x  1 . . . .  ,X2M]/I , [xi[ : n, 

where I is the ideal generated by the elements 

X2i_lX2i - -  XlX2, i = 2 , . . . ,  M; 
xixj i f l i - j l _ > 2 ;  and 
x p i = l , .  ,2M, 

with p = 2 if n > 2, and p = N + 1 if n = 2. 

The projection p induces an injection in rational cohomology. Let fY be the 

cohomology class given by XlX2 C H2"(R'), and f~ its image in H2n(Rz). 
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LEMMA 6: Let g: S -+ R ~ be a continuous map. Suppose that dimH~(S)  < M; 
then H2n(g)(fY) = O. 

M Hn Proo~ There exists, by hypothesis, a nonzero element ~-~4=1 aix2i-1 C (R'), 

with c~i C Q such that Hn(g) (~ i  oqx2i-1) = O. Choose io with ~io ¢ 0. In this 

case, 

M 

0 :  H2n(~) ( E ct.ix2i-l " 2C2io ) 
i=1 

which implies that H2~(g)(~2) = O. 

8 
PROPOSITION 11: R z V T < < T .  

Proof 

= H2n(g)(ctioZ2io_lX2io) ---- c~ioH2~(g)(f~), 

Suppose we have an H2-surjective map 

f:  V T - -+Rz .  
kEK 

By the cellular approximation theorem, f is homotopic to a map g that maps 

(Vke~," T) 2n-1 into Z x (Vi2_ M x i ) .  We have therefore a commutative diagram 

(VkEA" T) 2n-1 g (\I2M Xi) q ~- Z X ~ v . i = t  > Z 

(Vk K T) 2n 9 . ((Z × Xi)) e2 )0, 

in which the vertical lines are canonical injections, and q is the standard 

projection on the first factor. 

The obstruction to extending gl(vk Z)~n-1 to a morphism g': (VkeK T) 2n ~ 
Z x (V i  Xi) is a linear map 

°b (g ) :H2n(hyKT) - -~  71"2n-l(Z)~;~Tr2n-l(  i " 

If the obstruction is zero, then q o g~ extends to a map g: VkeK T -+ Z, since 

Ir>2~(Z) = 0. The homomorphism H2(g) being surjective, H2(#) is also surjec- 

tive, and this implies that T << Z, which is impossible by Proposition 10 and 

Lemma 4. 

The obstruction map ob(g ) is thus nonzero. There is therefore some k E 

/ ( ,  with corresponding space T denoted by Tk, such that ob(g): It2n(Tk) --+ 
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~r2~-, (Z) ® rr2~_l (Vi Xi) is nonzero. Since the image of ob(g) is contained in the 

kernel of r2~-l(i)  = Q(a + w), there exists a (2n)-cell in Tk with attaching map 
~2n--1 ~: ~0 ~ (Tk) 2n-1. This makes the following diagram commutative, 

So2~-1 S02n-1 

(Tk) ~ ' - '  ~ , z x (V~\~ x~) 

t 
((Tk) 2n-1 U,,p e2n)0 g :" Rz,  

where the vertical lines are cofibration sequences. Since the suspension of the 

attaching map ~ is trivial, H2~-1(~) = 0. The naturality of the homology long 

exact sequence of a cofibration shows that [e 2n] belongs to the image of H2n(g). 
Therefore H2n(g)(ft) ~ 0. By composition with the projection p: Rz  --+ R' we 

obtain a map pog: ((Tk) 2'~-1 U~ e2~)0 --~ R' such that H2~(pog)(ft ') ~ O, which 

is impossible by Lemma 6. | 

PROPOSITION 12: When M >_ 2, the space Rz  is hyperbolic. 

Proob The space L = v/M=I X2i is clearly a retract of Rz. Since the cohomology 
of L does not satisfy Poincar duality, L is a hyperbolic space, and thus its rational 

homotopy grows exponentially. Since L is a retract of Rz  the same is true for 

Rz,  and therefore Rz is hyperbolic. II 

LEMMA 7: Let f: Rz  V T --+ Rz  be a continuous map. Then f is homotopic to 
2M 

a m a p  g satisfying g((Z x ( V i = l  Xi ) )  V T )  2n C Z x (Vi  TM Xi) .  

2M Proof: Since the ( 2 n -  1)-skeleta of the spaces Rz and (Z x (Vi=l x i ) )  coincide, 
2M ~ f maps (Rz VT) 2n-1 into (Z x (Vi=l" i)). We want to prove the existence of a 

map f '  making the following diagram 

2M T)2n_ 1 I, 2U ( (Z  X ( V / = l X i ) )  V > Z x (Vi___l x{) 

I' 2M ((z x (V.~=, xd )  v T) ~'~ - Z × ( V ~  x d  

1 , l 
Rz V T ) Rz 
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commutative (up to homotopy). In the diagram, the vertical arrows are canonical 

injections, and f l  is the restriction of f .  The obstruction to the existence of f t  

is a linear map 

o b ( f l ) : H 2 n ( ( Z x ( y x i ) ) V T ) - +  Q • (o~ + o~). 

Suppose that the obstruction is nontrivial. Then for every 2n-cell of Z x (Vi Xi) 

or of T there is an integer k # 0 such that the restriction of f l  to 

]1:  ( ( (Zx (Vxi))VT)2n-lu,Te2n)o ) ( (Zx (Vxi))Uo~+~e2n)o =Rz 
i i 

satisfies H2n(L)([e2n]) - k[e 2hI • H2n(Z x (Vi x i ) ) .  

Let 

~, • H2"(((Z x ( V  Xi)) V T) 2n-1 U 1, e 2n) 
i 

be a cohomology class satisfying f~l([e2tn]) -- 1. Since ~([e2~]) = 1, we have 

g2~(L)(f~) = k~l .  
By construction, el 2" is a 2n-cell of either T or Z x Xi. Let S be T or Z x Xi 

according to which space this cell is attached to. The composition pol l  Is satisfies 

H2n(p o ]l[S)(f~) # 0 in contradiction with Lemma 6. This contradiction shows 

that the map ob(fl) is trivial. | 

LEMMA 8: Let f: R z  --+ Rz  be a continuous map such that 

f Z x  V x i  c z x  x.i . 

2M Let q: (Z × (Vi=l Xi))  2n --+ z be the canonical projection and we suppose that 

qo f : Z 2n -+ Z extends to a homotopy self-equivalence f~ of Z. Then f: R z  -+ R z  

is also a homotopy self-equivalence. 

Proof Let ¢ be a homotopy inverse of f ' :  Z --+ Z, and let g = (t/, x id) o f .  

Then the following diagram 

(Z x Vi Xi)  2n s g,×id > ( z  × V~ x i )  ) z × Vi x i  

1 l L 
( z  x V~ x~) u~+~ e ~n s . R z  , ( ( z  x V~ x~) u~,(~)+~ e2")o 
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commutes. We have 

with c and 
i 

7rn(g)(ki) =li + mi, with / /ETrn(Z) ,  mi e Trn(V xi), 
i 

where ki denotes a generator of 7rn(Xi). The map q o g: (Z x (Vi Xi)) 2n --+ Z 
extends to Z x (V~ x~) since 7r>_2n(Z) = 0. This shows that  the Whitehead 

brackets [ l i , - ]  are zero in ~r.(Z). In particular, 

M M 2 M  / x 

7T2n--l(9)(0J) = ~ 7r2n-'(~)([k2i-l'~2i]) -~ ~-~[m2i-"?~2i] C 71"2n-' ( V "Yi)" 
i----1 i = 1  \ i = 1  z 

Therefore r.(g)(c~ + w) = c~ + w', with w' C 7r2~-1(Vi xi). Since g extends to a 

map g' from Rz into ((Z x Vi xi) u#,(~)+~ e2n)0, we necessarily have 

¢((~) = ua, w ' =  uw, and H.(f)[e 2n] = / ] [ e 2 n ] ,  

for some u ¢ 0. In particular, H2n(f)(~t) = ugt. It follows that H~(f):Yn(ViXi ) 
--+ Hn(Rz) = Ha(z) e H~(V~ X~) is injeetive. 

We proceed to prove that H~(f) maps H'~(Vi Xi) into H~(Vi Xi). Suppose 

this is not the ease. Denote by io the least integer i such that  H~(f)(xi) ¢ 
Hn(Vi Xi). Then we have 

Hn(f)(xi) = y + z, y e H~(V  xi), z e Hn(Z), z ¢ O. 
.i 

Let V be the subspace generated by the xi with l i -  i01 > 2. Clearly, 

V'x io  -- 0. On the other hand, for degree reasons, V contains a subspace 

W of dimension greater than 3M - 2, such that Hn(f)(W) C Hn(Vi Xi). In 
3 this case, dimH2n(f)(W " Xio) = dim(H~(f)(W) ® Qz) > ~M - 2, which is 

impossible. 

Therefore, H~(f) maps bijectively H~(ViXi) into itself. We conclude that 

Hn(f) is an isomorphism, and that gn(Vi Xi), H*(Z) and ~ are in the image 

of H*(f). Since H*(Rz) is generated by those elements, H*(f ) :  H*(Rz) --+ 
H* (Rz) is an isomorphism. | 

PROPOSITION 13: The decomposition Rz V T is irreducible relative to T. 

Prook We first verify the irreducibility property (P2). Let 

s=Vs : V (Rzvr) Rz 
k k E K  



Vol. 136, 2003 LATTICE OF CELLULAR CLASSES 343 

be an H2-surjective map. By Lennna 7, each map fk maps the 2n-skeleton of 
(\I2M XA Z V T into Z x ~vi=l ,j. Since 7r___2~(Z) = 0, the map p o fk[zvT extends to a 

map 9k: Z V T -+ Z. 

If n > 2, H2(gk) = H2(fk), and thus Vkgk is H2-surjective. If n = 2, 

by the choice of N, fk maps each H2(X,) into H2(Vi Xi). Therefore Vk gk : 

VkeK(Z  V T) --+ Z is also H2-surjective. 

Now, in both cases, since Z V T is irreducible relative to T, there exists k such 

that  gk[z: Z --~ Z is a homotopy self-equivalence. It  follows from Lemma 8 that  

fk[Rz: Rz  --+ Rz  is also a homotopy self-equivalence. 

We now verify the irreducibility property (/2). Let f :  Rz  ~ Rz  be a map 

inducing an isomorphism on H2. By Lemma 7, f maps the 2n-skeleton of Z into 
2M Z x (Vi=I Xi). Since Ir>_2~(z) = 0, the map p o f extends to a map 9: Z -+ Z. 

If n > 2, H2(g) = H2(f), and thus g is a homotopy self-equivalence. If 
= H [X 12M ~ n 2, by the choice of N, f maps each H2(Xi) into z tV=l  - i/. Therefore, 

H2(f) :  H2(Z) --+ H2(Z) is a surjective map. Since Z is irreducible, g: Z -+ Z is 

a homotopy self-equivalence. 

Finally, in both cases, Lemma 8 implies that  f is a homotopy self- 

equivalence. | 

6. P r o o f  of  T h e o r e m  1 

In this section all spaces will be strictly simply-connected c-finite rational spaces. 

We begin by proving the theorem in a special case. 

8 

PROPOSITION 14: Let Z V Y << Y be a strict inequality with Z V Y an irreducible 

decomposition relative to Y, and Z a hyperbolic space. Then there are infinitely 

many non-comparable simply-connected finite rational spaces Zn, n >_ 1, such 

that 
S 

Z V Y- << Z,., <~< Y-. 

Proofi We denote by (L(V), d) the Quillen model for Z. In this case, the group 

Aut(L(V) @Q C, d) is a finite dimensional complex algebraic group that  acts, for 

any integer q, in an algebraic way on the complex vector space Hq(L(V)©QC, d) = 

Zrq+l(Z) 0 C. 

Let M denote the cohomological dimension of Z V Y, and N the dimension of 

the algebraic variety Aut(L(V)q)Q C, d). We choose an integer q > M such that  

dim nq+a(Z) O Q > N, and we choose a nonzero element Ct I E Hq(L(V), d). In 

this case a l "  Aut(L(V) @Q C, d) is a constructible set ([17], p. 33) of dimension 

less than or equal to N. Therefore, there exists an element a2 E Hq(L(V),d) 
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such that  a2 ¢ a~. Aut(L(V) ®Q C,d). We construct in this way a sequence of 

elements (a l ,  a2 , . . . )  such that  for i • j ,  ai ~ aj • Aut(L(V) ®Q C, d). Suppose 

we have constructed a b . . . , a m  satisfying the above requirement. The union 

u im=l ai • Aut(L(V) ®Q C), d) is a finite union of constructible sets of dimension 

less than or equal to N. Since we are in characteristic zero, this union is therefore 

also a constructible set of dimension less than or equal to N. We then choose 

O~rn+l e Hq(L(V), d) such that  O~m+l ¢ Uim__l o~i. Aut(L(V) OQ C), d). 

We denote by am the element of %+1(Z) corresponding to (~m by the 

natural  isomorphism Hq(L(V),d) ~- 7rq+l(Z), and we consider the spaces Zm = 

(Z Uam ca+2). Since q is greater than the dimension of Z V Y, by Proposition 8, 

we have 
$ 

Y v Z & Z m < < Y .  

Suppose now that  Zm << Zn for some n ¢ m. This implies the existence of an 

H2-surjective map 

s=Vsk: V Zm+Z . 
k k E K  

The restriction of f to its skeleton of dimension M is an H2-surjective map 

f: Vk(Z V Y) ~ Z. Therefore, for some ko E K, ]kolZ: Z --+ Z is a homotopy 

equivalence. Since ]ko is a map from Zm to Zn, we have 7rq(fko)(am) = an. This 

implies that  an C O~rn • Aut(L(V) ®Q C, d), which is impossible by construction 

of the ai .  II 

8 
Proof of Theorem 1: Suppose that  X << T is a strict inequality between strictly 

8 
simply-connected c-finite rational spaces. Clearly X ,,~ X V T << T. We then 

take an irreducible decomposition of X relative to T, 

X ,,~ ~ / X i  VT. 
/ = 1  

Necessarily in the following sequence of inequalities 

X ~ V X i V T < < V X i v T < < ' - ' < < X .  V T < < T ,  
i > 1  i > 2  

one must be strict. Suppose X~ V (V>~+I x i  v T) ~ V>j+I Xi V T. Then, we 

write Z = Xr and Y = V>,-+l Xi V T, and we have 

3 
Z V Y  << Y. 



Vol. 136, 2003 LATTICE OF CELLULAR CLASSES 345 

When Z is hyperbolic, we apply Proposition 14 to conclude, and when Z is 

elliptic, the space Rz comes into play. By Propositions 10 and 11, we have 

8 8 

Z V  Y << Rz  v }" << ]q 

By Proposition 12, Rz is hyperbolic, and by Proposition 13, Rz V Y is an 

irreducible decomposition relative to Y. We then apply Proposition 14 to the 
S 

inequality Rz V Y << Y. | 

7. On the  dens i ty  of the  poset  B 

7 . 1 .  CONSTRUCTION OF POSET INJECTIONS. Let X be an irreducible hyper- 

bolic simply-connected finite CW-complex that  is Bousfield equivalent to the 

sphere S 2. Let a~ be an element as in the statement of Theorem 2. We write 

Cd 1 ~- 02, m,--'~ d i m X ,  and c = cat(X).  We thus have 

( a )  CO 1 @ 1 E 7r2q: (f~X) O Q; 

(b) 2ql + 1 > m; and 

(c) ~, o : ¢ R(X). 
The Lie ideal generated by cJ1 C)1, denoted I ~°' , is therefore infinite dimensional. 

In particular, I~d~ is also infinite dimensional as the following lemma shows. 

LEMMA 9: If I is an infinite dimensional Lie ideal in the rational homotopy Lie 

algebra 7r. (f~T) (D Q of a simply-connected finite CW-complex T, then Ieven iS 

also infinite dimensional. 

Proof: Suppose dim/even < ec, and denote by r the maximal degree of a 

homogeneous element of Ie ...... Then I>,. = (~s>~ Ix is a graded Lie algebra 

concentrated in odd degrees. Therefore, I>r  is abelian and contained in R(X).  

Since R(X) is finite dimensional, this would imply I is finite dimensional, which 

contradicts the hypothesis. | 

We choose an element co2 E 7r2q2(f~X) such that  a~20 1 C I ~ and 

, ~d 1 dnnI~s > c + l ,  and ~2(2) l ~ R ( X ) .  
s<q2 

In particular, some multiple of aJ2 is in the kernel of the :nap rr2q~(f~X) --+ 

7r2q2 (f~(X U~: e2q:+2)). We replace w2 by this multiple, and we deduce a natural 

induced map 

X I..Jcb 2 e 2q2+2 ---} X ~J~21 e 2q1+2. 
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The ideal t ~2 generated by w2 Q 1 is infinite dimensional. Therefore, by Lemma 

9, we can choose an element w3 E 7r2q3(QX) with a~3 ® 1 6 I ~2, w3 ® 1 ¢ R(X) ,  

and 

E d i m / ~  > c +  1. 
s<q3 

Once again we replace w3 by some multiple so that  w3 belongs to the kernel of 

the map 7r2q3(QX) --+ 71-2q3(Q(X U&2 eeq2+2)). 
We continue by induction and construct a sequence of elements 

02 ~- Odl ,092 , . . .~dn~. . .  

such that  for each n _> 2, 

(a) w,~ @ 1 belongs to the ideal I ~ - ~  generated by Wn-1 @ 1; 

(b) I~n] ~- 2qn and Z~<q,  d i m I2 : -1  > c +  1; 

(c) ~n Q 1 ~ R(X)  and 

(d) wn E Ker(Tr2q._l(QX ) -+ ~2q._I(Q(X U~.,~_, e2q~-l+2)). 

By property (d), the identity map on X extends into a continuous map 

fn: "Yn = ( X  U~r,, e 2qn+2) ---+ J~n--1 = ( X  O&n_l c2qn-l+2) .  

We obtain in this way an infinite sequence of spaces and maps 

X ~ " ' "  ~ X n  f'~) "Yn-1 -"--+ "'" ~ X1 = (X U5.,1 e2qa+2). 

We consider now in more detail the map fn: Xn --+ Xn-1. 

LEMMA 10: The ideal i(1) generated by w~-i in ¢r.(~Xn) © Q is infinite 

dimensional 

Proof'. Let I -- I (1). By construction, I2s = I ~  ~-1 for 2s < 2qn. The choice of 

¢z) n was made in order to have dim/even > c + 1. On the other hand, since Xn 
is obtained from X by adjonction of a cell, the Lusternik Schnirelmann category 

of X ,  is less than or equal to c + 1. Therefore 

dimIeven > c +  1 > cat(Xn).  

not contained in R(X~), and is therefore infinite This implies that  I is 

dimensional. II 

Once again, we choose an element a2 6 7r2l~ (Xn) such that  

a 2 © l  CI2&; 
12 > qn; 
a2 Q 1 ~ R(Xn); and 
Y'~r<~2 dim Izr > e + 2. 
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We then construct the space 

.Yn--l,2 : (Xn U&2 e1~21+2). 

Since ~2 ~ 1 • I ,  the class of c~ in 7r212(Xn_t) is a torsion element. Replacing 

~2 by a multiple, we can assume that  [ct~] = 0 in :r.(X~_~). 

We denote by i(3) the ideal generated by Wn-1 (3 1 into ~r.(f~Xn-L2) @ Q. 

LEMMA 11: The ideal I (a) is infinite dimensional. 

Proof: By cons t ruc t iondimI~ ) = dimI2r ,  for r < 12. Therefore, d i m I  (3) > 

c + 2 >_ cat(X~_l,2), and thus I (3) is not contained in R(Xn-I ,2) .  1 

Let Xn-l ,3  = (X~-l ,2 Ua3 elaal+2), where a3 is chosen in 7r21a(~Xn_l,2) with 

the following properties: 

/ c~3 C~ 1 E i(3); 
the class of a3 is zero in 7r213(Xn_l); 
13 > 12; 
c~3,2 1 ¢ R(X~-I,2);  and 

}-~'<la dim I~3r ) > c + 3. 

This process constructs an infinite sequence of spaces and maps 

X n  = Xn_l,1 c__} Xn_l,2 ¢__.y . . . X n _ l , m _ l  fn--l~m X n _ l , m . .  " 

defined inductively as follows. The ideal I (m) generated by co~_1 Q 1 in the graded 

Lie algebra 7 r . (~Xn- l ,m- t )  Q Q is infinite dimensional by construction, and we 

choose an element c~m E 7r~lm (~'~Y,n--l,m--1) such that  

{ c~m C) 1 # l (m) ;  
the class of c~rn is zero in 7r21m(.3i~n_l) ; 
l.z > Im-1; 
C~m C) 1 ~ R(Xn- l ,m-1) ;  and 
}-~,-<lm dim I ~  m) > c + m. 

The last condition forces the ideal I (re+l) to be infinite dimensional. The space 

Xn- l ,m  is defined by 

X n - l , m  = (Xn- l ,m  1 U&~ e2/m4-2). 

Since the element [am] = 0 in 7r2~ (X~_t) ,  the identity map on X extends to 

maps 9m: Xn-l , ,~ ~ Xn-1,  such that  9mfn- l ,m ~- 9m-1. 

An important  property of the above construction is that  we stay at each step 

in the category of hyperbolic and irreducible spaces. 
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PROPOSITION 15: The spaces Xn and .k~,rn are hyperbolic and irreducible. 

Proof: The spaces Xp,q are hyperbolic by construct ion because 7r. (l-LYp,q) ® Q 

is infinite dimensional. The spaces Xp,q are irreducible because their m-skeleton 

X is irreducible, and the Hurewicz map hr: ~rr(Ap,q) Q Q -~ Hr(Ap,q; Q) is zero 

for r > m. | 

An  iterative use of Proposi t ions 8 and 9 shows tha t  the spaces Xp,q define 

different cellular classes. In particular,  we have the following sequences of strict 

inequalities: 

8 8 8 ~ 8 8 
X <( "'* << X n (< X n _  1 . - .  << X 2 (< X1,  a n d  

8 8 8 8 8 

Xn ---- Xn-l ,1  ~ Xn-l ,2  ~ Xn-l ,3  << - "  << Xn- l ,m << " "  ~< Xn-1.  

PROOF OF THEOREM 2. We use the representation of the rat ional  numbers  7.2.  

as finite simple continued fractions. Let  

1 
[Xl, 3?2 . . . .  , Xn] .--  Xl ~ xl+ 

" ,  

1 

Such an expression is called a finite simple continued fraction if all the xi belong 

to 1~{0}. Any simple contimmd fraction of the above form represents a ratio- 

nal number  of ]0, 1]. Conversely, any nonzero rat ional  number  in ]0, 1] can be 

expressed as a finite simple continued fraction of the above form ([19], Theorem 

7.2). Moreover ([19], Theorem 7.1), if [ a s , . . . ,  aj] = [bl . . . .  , bn] with aj > 1 and 

bn > 1, then j -- n and ai = bi, i = 1 . . . . .  n. On the other hand, we have 

[al . . . . .  an, 1] = [al . . . .  , an + 1]. 

We clearly have the following relations: 

[al . . . . .  a2n] < [al , . . . ,a2n,  r-+- 1] < [hi . . . .  ,a2n, r] 

< [ e l , . . .  , a 2 n  ,1] ---- [ a l , . . . , a 2 n - ~ -  1], 

[ a l , . . . , a 2 n - l + l ] =  [ a l , . . . , a 2 n - l , 1 ]  < [ a l ~ . . . , a 2 n - l , r ]  

< [ e l , . . . ,  a 2 n - 1 ,  r + 1] < [ a l , . . . ,  a2n-1] .  

Let us come back to the construction. Star t ing from (X,w)  we have con- 

s t ructed new pairs (Xp,q, aq+l) .  We can star t  with these pairs and apply the 
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same construction. This defines new spaces with new homotopy classes, and the 

process can be extended over and over by induction. Let 

(x ,  ~)~,~ = (X~,q, ~q+l), 

and define the map fx ,~ by the following inductive process: 

Yx,~(O) = X; 

fx,~(1) = X U~ e 2 q ' + 2  : X1; 

IX,~[Pl = Xp; 

fx,~[P, q] : Xp,q; and 

fx,,c[a,, a2 . . . . .  a2n, r, s] = f(...(((x,~)~,,o2)o3.~4)...)o2~_,,o2, [r, s]. 

This map is well defined because, by construction, 

-~p,1 = -~p+l 

and 

f~x,~),,o [1] = -%,q+1. 

It follows directly from Propositions 8 and 9 that the map fx ,~ is an injective 

morphism of posets. II 

7.3.  EXAMPLE OF HYPERBOLIC IRREDUCIBLE FINITE CW-COMPLEXES.  For 

n >_ 3, the connected sum of n copies of P2(C), i.e., Xn -- # n p 2 ( c ) ,  is an 

hyperbolic irreducible finite CW-complex. Since 7r2(Xn) --- Z n, Xn is Bousfield 

equivalent to S 2. The space Xn is obtained from the wedge of n spheres of 

dimension two, S 2 V S~ V . . .  V S~, by adding a four dimensional cell along the 

element 

O~n = [al, all q- [a2, a2] + - "  q- [an, an], 

where a~ represents the identity map on the sphere S 2, while [ - , - ]  denotes the 

usual Whitehead bracket. Since the cohomology of Xn is not generated as an 

algebra by only one generator, the element an is inert ([12], [10]). This means 

that the cellular injection 

v v . . .  v Sn -+ X .  

induces a surjective map on the rational homotopy groups. Let qn: Xn -+ Xn-1 
denote the map obtained by collapsing the sphere S 2. The commutativity of the 
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d i a g r a m  

Sl v v . . .  v 

X.  q~ - X,~-I 

shows that qn induces a surjective map on the rational homotopy groups when 

n _> 4. This implies ([I0], Theorem 37.3) that I(n -- KerTr.(Dqn) d) Q is a free 

Lie algebra on at least two generators. We choose an element wn E 7r>_6(DXn) 

such that 

i. Wn ® 1 is a nonzero element in Kn, and 

2. [ ~ ]  = 0 in ~,(X~_,). 
Clearly O~n<91 ~ R(Xn), and the pair (Xn, w,~) satisfies the hypothesis of Theorem 
2. 
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